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Optimized Multiple Description Lattice Vector
Quantization for Wavelet Image Coding
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Abstract—Multiple description (MD) coding is a promising
alternative for robust transmission of information over non-pri-
oritized and unpredictable networks. In this paper, an effective
MD image coding scheme is introduced based on the MD lat-
tice vector quantization (MDLVQ) for the wavelet transformed
images. In view of the characteristics of wavelet coefficients in
different frequency subbands, MDLVQ is applied in an optimized
way, including an appropriate construction of wavelet coefficient
vectors, the optimization of MDLVQ encoding parameters such
as the choice of sublattice index values and the quantization
accuracy for different subbands. More importantly, optimized
side decoding is employed to predict lost information based on
inter-vector correlation and an alternative transmission way for
further reducing side distortion. Experimental results validate
the effectiveness of the proposed scheme with better performance
than some other tested MD image codecs including that based on
optimized MD scalar quantization.

Index Terms—Image coding, lattice vector quantization, mul-
tiple description (MD) coding, wavelet transform.

I. INTRODUCTION

NETWORK congestionanddelaysensibilityposegreatchal-
lenges for multimedia communication system design. This

creates a need for coding approaches combining high compres-
sionefficiencyandrobustness.Multipledescription (MD)coding
has emerged as an attractive framework for robust transmission
over unreliable channels. It can effectively combat packet loss
without any retransmission thus satisfying the demand of real
time services and relieving the network congestion [1]. Multiple
description coding encodes the source message into several bit
streams (descriptions) carrying different information which can
then be transmitted over separate channels. If only one channel
works, the only description can be individually decoded to guar-
antee a minimum fidelity in the reconstruction at the receiver.
When more channels work, the descriptions from these channels
can be combined to yield a higher fidelity reconstruction.

The MD versions of transforms [2] and quantizers [3]–[8] are
the two main techniques for the design of MD image coding.
An MD image coder using pairwise correlation transform is
presented in [2]. A design of MD scalar quantizers (MDSQ)
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for image coding is described in [3], which exploits a subop-
timal algorithm to allocate rate subject to global constraints on
the coding bit rate and side distortion. In [5], an MD image
coding algorithm is developed also based on MDSQ with op-
timization of MDSQ parameters, which produces similar peak
signal-to-noise (PSNR) values with about 50%–60% of the bit
rates required by the two above mentioned MD image coders. In
[6], a modified MDSQ (MMDSQ) is designed in two stages, that
is, the first stage is a basic MDSQ stage while the second stage
is a finer central quantizer to quantize the residuals from the first
one. The MMDSQ is applied to the Tarp filter image coder with
classification for embedding (TCE) [10], which is reported to
have achieved better performance. In addition, to be compatible
with the image coding standards, some other methods like that
in [9] have designed MD image coders without using any spe-
cial transforms or MD quantizers. In contrast, the MD coding
scheme in [9] directly utilizes streams produced by a JPEG2000
encoder and exploits the rate-allocation of JPEG2000 streams to
produce MD streams.

We attempt to apply MD lattice vector quantization (MDLVQ)
for the design of a more effective two-channel MD (or two-de-
scription) image coder. We developed a preliminary MDLVQ
based image coder in [8]. In this paper more effective enhance-
ments are considered to substantially improve the performance
of MDLVQ based image coding. Several factors which are
important and of significant impact to the performance are taken
into consideration for optimized MDLVQ encoding and de-
coding. Firstly, the forming of coefficient vectors needs to adapt
to different correlating characteristics between wavelet coeffi-
cients in different subbands. Secondly, like the optimization for
the MD scalar quantization (MDSQ) [5], the MDLVQ encoding
parameters need to be optimized in terms of rate-distortion
performance in view of the varying importance of different
subbands. More importantly, the reconstruction quality from
the conventional MDLVQ side decoders can be significantly
improved by utilizing inter-vector correlation and predicting the
lost information when necessary for further reducing the side
distortion. To realize the optimized side decoding, an alternative
transmission of MDLVQ labels is developed.

The rest of this paper is organized as follows. In Section II,
an overview of the proposed MD coding scheme is given. In
Section III, the optimization of MDLVQ encoding and decoding
is presented in detail. The performance of the proposed scheme
is examined against the other coders in Section IV. We conclude
the paper in Section V.

II. OVERVIEW OF PROPOSED MD SCHEME

Fig. 1 illustrates our scheme and a step-by-step recipe is ex-
plained as follows. Here, we consider two balance channels, that
is, the bit rate of two descriptions and the side distortions for the
two side decoders are approximately the same.
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Fig. 1. Block diagram of our proposed scheme.

Fig. 2. Vector construction in different subbands.

Step 1) Wavelet Decomposition

A given input image is decomposed into subbands
(subband subband subband , denoted by ,

), by applying a wavelet transform. Following that
done in [5], small wavelet coefficients are set to zeros by
applying an appropriate threshold.

Step 2) Vector Construction

After wavelet decomposition, correlation still remains be-
tween coefficients in the subbands. Grouping the coefficients
appropriately can exploit intra-vector redundancy well. During
wavelet decomposition, subbands arise from separable appli-
cation of vertical and horizontal filters, denoted as LL, HL,
LH, HH, respectively [11]. It is known that wavelet coefficients
in different subbands have different directional correlation.
For example, vertical correlation exhibits in HL coefficients,
horizontal correlation in LH, diagonal correlation in HH and
neighboring correlation of low-frequency components in LL.
Therefore, it is more efficient to group coefficients in different
subbands according to their directional correlation. Fig. 2
shows our scheme for vector construction: HL is scanned to
form vectors along vertical direction, LH is scanned in hori-
zontal direction and HH is scanned in zigzag way. In addition,
spiral scan is also applied in LL subband considering the strong
correlation among neighboring coefficients. Predictive vector
quantization can be applied to further exploit these correlations.

Step 3) Lattice Vector Quantizer (LVQ)

In this paper, lattice is used for lattice vector quantiza-
tion (LVQ). It has been shown [4] that in the two-channel case,
MDLVQ using exhibits better performance than that based
on in terms of central and side distortions. is equivalent
or similar to the hexagonal lattice [12]. The hexagonal lattice

can be spanned by the vectors (1,0) and , and the
generator matrix is

(1)

Every pair of coefficients in each subband is formed as a
2-D vector according to the grouping way in Step 2. A lattice
vector quantizer with a quantization “volume-size” (like the
step-size in scalar quantization) is applied to such 2-D vectors,
thus producing a quantized symbol , . It is known that
the VQ encoding complexity increases with dimensionality
and codebook size. Here we use the lowest dimension vector,
i.e., 2-D vector. Moreover, LVQ encoding can be implemented
by a fast quantizing algorithm [12] which does not require
performing the computation-intensive nearest neighbor search
based on squared distance calculation. In the fast encoding
algorithm [12], only two matrix multiplications are required for
vector mapping between a 2-D vector and a 3-D vector, and a
modification may be needed for the mapped 3-D vector to make
the sum of its 3-D values zero. In this way, the complexity of
LVQ on is considered very low. In addition, another fast
quantizing algorithm in [12] may be a better choice to accel-
erate LVQ encoding further. In view that the hexagonal lattice
is the union of two rectangular lattices, the encoding can be
simply achieved by finding the nearest point in each rectangular
sublattice and selecting the nearer of these two points.

Step 4) Labeling Function With Alternative Transmission

Information about a quantized point is mapped to two rep-
resentations and then sent across two channels, subjected to bit
rate constraints imposed by each individual channel. This is
done by a labeling function [7] followed by arithmetic encoding.
The labeling function maps to a pair ,
where is a sublattice of with the index , . The
index determines the coarse degree of the sublattice which
can control the amount of redundancy in the MD coder [4]. In
Section III, optimization for the index and the LVQ quanti-
zation “volume-size” (in Step 3) will be presented in detail.

Fig. 3 is an example of a sublattice with index .
In the case of , we can obtain a labeling function as in
Table I, where each fine lattice point is mapped to a unique
label , with and being two sublattice points as
close to as possible. Note that the proposed mapping scheme
shown in the table is slightly different from the index assignment
developed by Servetto, Vaishampayan and Sloane [4] (known
as SVS technique). In our proposed scheme, is always closer
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Fig. 3. Example of sublattice with index 13:fine lattice points are labeled by
a; b; c; . . . ; l; and sublattice points are A;B;C; . . . ;F.

TABLE I
LABELING FUNCTION WITH N = 13

to , thus is denoted as the near sublattice point and the
far sublattice point. To strike a balance of reconstruction quality
with any single description sequence, and are alternately
transmitted over two channels.

As a simple example, if we have a quantized se-
quence of fine lattice points

, then the two sequences of sublat-
tice points using the labeling function in Table I are

and
. Based

on the alternative transmission scheme, the sequence

is transmitted over channel 1 and

over channel 2. The alternative transmission way is exploited
in predicting lost description in the optimized side decoding,
which will be explained in Section III-B.

A general and widely used context-based arithmetic codec
[13] is applied to code the sequences of and before
transmission. The arithmetic coding used in our scheme is based
on a three-order “finite-context” model, that is, three previous
symbols make up the context.

Step 5) Central Decoder and Side Decoder

At the receiver, if both descriptions are received, the two de-
scriptions can be processed by the central decoder after arith-
metic decoding and the sequence of fine lattice points can
be reconstructed with the central distortion. However, if either
of descriptions is lost, the conventional side decoder can only
produce or as an approximate to , leading to a larger side
distortion. In contrast, we can obtain a better side decoding re-
sult by performing lost information prediction when necessary,
based on the neighboring inter-vector correlation of wavelet
coefficients and the above mentioned alternative transmission
scheme. The design of the optimized side decoder with predic-
tion will be elaborated in the subSection III-B.

III. MDLVQ ENCODING AND DECODING OPTIMIZATION

A. Encoding Parameter Optimization

In MDLVQ image encoding, there are two important factors
which will affect the reconstruction image quality and the bit
rate. The first one is the area of hexagonal lattice (in Step 3), i.e.,
the quantization “volume-size” used in LVQ, while the other is
the choice of sublattice index (in Step 4).

Since the lattice is the space which can be spanned by
two vectors (1,0) and , the area of the hexagonal
lattice is determined by the two vectors. However, we can keep
the shape of the hexagonal lattice and change its area by mul-
tiplying the generator matrix by a factor .
The parameter in the LVQ is similar to the step-size in scalar
quantization (SQ). By changing , the central distortion and
its associated bit rate can be adjusted.

For the lattice , the choice of index will not change the
central distortion for a given . However, the side distor-
tion and will be sensitive to the value of . When the
index increases, has no change but and will in-
crease significantly. On the other hand, the bit rates associated
with and will decrease with the increase of . The index

is analogous to the number of diagonal of index assignment
in MDSQ [5]. In MDSQ, the increasing of the number of diag-
onal will have severe impact on and and their associated
rates while does not change. It is desired to find the optimal
parameters and for striking the best trade-off among cen-
tral distortion, side distortion and their associated bit rates. With
the analysis of analogies between MDLVQ and MDSQ, we can
perform the optimization of parameters and in MDLVQ
encoding like the optimization way for MDSQ encoding in [5].
Therefore, we can formulate the MD design problem as yielding
optimal performance in the presence of the constraints of the
side distortion and its bit rate. To facilitate the description, some
notations are defined in the following.

Let denotes an image, and its
wavelet subbands after the decomposition. refers

to the magnified degree of the lattice area (i.e., quanti-
zation “volume-size”) used for all the subbands.

represents the set of the index num-
bers used in the labeling function for different subbands.

, and denote the
mean squared errors (MSE) from the central decoder and the
side decoders for the input image , respectively, given the
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Fig. 4. Encoding optimization process.

lattice vector quantizers with parameter and the index set
and are the bit rates for

encoding each description of , respectively.
Our goal is to find the optimal parameters and in

solving the following optimization problem:

(2)

subject to

Condition 1 (3)

Condition 2 (4)

where is the available bit rate to encode each de-
scription and is the maximum distortion acceptable
for single-channel reconstruction. The encoding optimization
module in Fig. 1 is based on the above functions. With the
constraints on the bit rate per channel and the side distortion,

and are adjusted accordingly to minimize the central
distortion.

The optimization for the problem is carried out in an itera-
tive way. The basic algorithm shown in Fig. 4 is to make use
of the monotonicity of both and as the functions of .
Firstly, after initialization a smallest is searched to minimize

subject to Condition 1. Secondly, according to Condition 2,
we can update sequentially from high frequency subbands
to low ones. Then the updated affects and

in Condition 1 and in turn will be updated to
minimize further. So the two steps will be iterated to update

and until has little change.

B. Side Decoding Optimization With Prediction

At the receiver, when only one channel works, the normal side
decoder just uses the received description as the reconstruction.
However, in our scheme, we know that far sublattice points re-
ceived may produce much larger side distortions than the near
ones. Therefore, it is not advisable to reconstruct the value
using the far sublattice point . In view that we only use 2-D
vectors based on lattice, the correlation among wavelet co-
efficients is far from being exploited, especially those in the low
frequency subbands. We may consider exploiting inter-vector
correlation to improve the reconstruction quality by predicting
the lost near sublattice points. Given our alternative transmis-
sion way, the lost near sublattice point for the received far sublat-
tice point can be bi-directionally predicted from the two neigh-
boring (the previous and the following) near sublattice points

received in the same description. If the received far sublattice
point can form a valid label (pair) with its predicted near sub-
lattice point (the previous or the following), then a fine lattice
point can be reconstructed as a forward or backward approxi-
mate value. However, if the label obtained by the combination
of the predicted near sublattice point with the received far sub-
lattice point is not valid, the forward or backward approximate
value of is the far sublattice point itself. The final reconstruc-
tion value from the side decoding is the average of forward
and backward approximate values. It is noted that the predic-
tion is performed for neighboring vectors in the same subband
according to the directional correlation illustrated in Fig. 2. An-
other point to be noted is that the first or last sublattice point in
a description has only backward or forward approximate value
based on backward or forward prediction.

As an example, suppose channel 1 transmits the sequence
of sublattice points starting with a near sublattice point and
then followed by far and near sublattice points alternatively.
Then channel 2 starts with a far sublattice point. As shown in
Fig. 5, if only channel 1 works with the received sequence {O,
A, O, B, O, B, D, B}, based on our optimized side decoding
with prediction, the reconstruction result is {O, a, O, b, O,
midpoint of b and i, D, i}. Similarly if only {A, O, A, O,
B, O, B, D} is received from channel 2, {a, O, a, O, b, O,
midpoint of b and i, D} is obtained as the reconstruction result.
In fact, instead of directly using the near sublattice point as
the reconstruction, one can also estimate the lost far sublattice
point based on the same prediction rule, thus producing a likely
better reconstruction by combining the received near sublattice
point with the predicted far lattice point. However, a wrong
prediction may lead to poorer reconstruction.

To substantiate the improvement of the proposed opti-
mized side decoding over the normal side decoding, the
following experiment was performed. Two standard images
Lena (512 512) and Barbara (512 512) were directly en-
coded using MDLVQ with volume-size and various
index numbers. Then they are decoded by the normal and
the optimized side decoding respectively. Table II shows that
with the same bit rate and same central PSNR values, the side
PSNR values by the optimized side decoding scheme are much
higher than using the normal side decoding. Moreover, the
difference between side PSNR values from two channels with
our proposed scheme is around 0.03 dB, which shows a balance
of reconstruction quality is also maintained.

With these encoding and decoding optimization schemes, the
overall performance of our MDLVQ has improved substantially,
especially the side distortion results as shown above. Inevitably
computational complexity has also increased. The most time-
consuming part is the encoding optimization which involves
the iterative processing for finding the two encoding parame-
ters. The decoding optimization only requires some more table
lookup operations for fine lattice point location and simple av-
eraging calculations, the computational cost of which is neg-
ligible. In view that the similar encoding optimization for two
encoding parameters is also employed in the optimized MDSQ
scheme in [5], the computational complexity of the optimiza-
tion schemes in our MDLVQ is almost the same as that of the
optimized MDSQ scheme.
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Fig. 5. Side decoding with prediction for better reconstruction.

TABLE II
SIDE PSNR VALUES OF NOMAL SCHEME VERSUS

OPTIMIZED DECODING SCHEME

TABLE III
RESULTS OF OPTIMIZED PARAMETERS FOR “BARBARA”

IV. EXPERIMENTAL RESULTS

Two standard images Barbara (512 512) and Lena
(512 512) are used to test our scheme against others. In
this paper, we focus on the comparison of our proposed
MDLVQ against the optimized MDSQ [5] since they are analo-
gous except the quantization and related optimization schemes,
although some other MD coding schemes are also included for
reference. To make a fair comparison, the same experimental
setup for the MDSQ scheme in [5] was applied here, i.e.,
10/18 Daubechies wavelet with 4 levels was used for wavelet
decomposition and target bit rate per channel is in the range
0.25–1 bpp. In Table III, we present some example results of
our optimized encoding parameters obtained for the standard
images Barbara at the bit rate 0.5 bpp per channel, where

Fig. 6. Central and side PSNR results by the proposed coder and other refer-
enced coders for “Lena.”

Fig. 7. Central and side PSNR results by the proposed coder and two referenced
coders for “Barbara.”

represents a set of the index numbers for 13 different subbands
from low frequency subband to high frequency subbands, that is,

.
From Table III, we can see at the bit rate 0.5 bpp per channel,

while the volume-size decreases and the index number
increases, the central PSNR values increase but the side PSNR
values decrease, or vice versa. This is analogous to the varia-
tion of central and side PSNR values in MDSQ [5] as changing
step size in SQ and the number of diagonals in MDSQ index
assignment.

Figs. 6 and 7 show the central and side distortion performance
of the proposed MDLVQ scheme against the optimized MDSQ
[5] for the two tested images at the bit rates of 0.25, 0.5, and
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TABLE IV
RATE/DISTORTIONS PREFORMANCE FOR “BARBARA”

1 bpp per channel. Other two MD coders presented in [2] and
[3] are also included for comparison. From the figures, we can
clearly see that our proposed MDLVQ outperforms the tested
MD image coders [2], [3]. Compared with the optimized MDSQ
in [5], ours can still consistently improve around 0.2–0.4 dB
for “Lena” and 0.5–0.7 dB for “Barbara” in central distortion
with same or very close side distortions at the same bit rate.
On the other hand, with similar central distortions, the proposed
MDLVQ can achieve more improvement in side distortion com-
pared with MDSQ [5], e.g., about 2–5 dB for “Lena” and 3–5 dB
for “Barbara” in side distortion for some points in Figs. 6 and 7.

It can be seen from Fig. 6 that the two algorithms reported
in [6] and [9] have shown better performance than our pro-
posed MDLVQ scheme. The possible reasons may lie in a few
aspects, among which a typical and crucial reason is that dif-
ferent single-description image coders and entropy coders are
employed in the two MD coders. It is known that the JPEG-2000
standard is developed to achieve excellent rate-distortion per-
formance for single-description image coding, especially at low
bit rate. It is reasonably conjectured that the gain of the MD
image coders in [9] based on JPEG-2000 may come largely from
better performance in the coding of each individual description
using JPEG-2000. On the other hand, the Tarp filter image coder
with classification for embedding (TCE) coder [10] has also
exhibited very good rate-distortion performance in single-de-
scription image coding, which is comparable to JPEG-2000.
The MD image coder in [6] is developed based on a modified
MDSQ (MMDSQ) together with the TCE entropy coder, de-
noted as MMDSQ-TCE. It is explicitly stated in [6] that the ef-
ficiency of MMDSQ-TCE is partially due to the efficiency of
the TCE coder, while the modified MDSQ adapts the efficient
image coder naturally to an MD system.

To have a closer look at the different performance between the
proposed MDLVQ scheme and the optimized MDSQ, Table IV
tabulates some representative pairs of central and side distortion
results with respect to various bit rates for the image “Barbara.”
These representative pairs are points with good balance between
central and side distortions in both schemes. From the results,
we can find that our proposed MDLVQ consistently outperforms
the optimized MDSQ [5] in both central and side distortion si-

multaneously at the same bit rate over a wide range from 0.25 to
1 bpp per channel, with both improvements of 0.688–2.436 dB
in side distortion and 0.211–0.689 dB in central distortion.

V. CONCLUSION

An MD image coding scheme using MDLVQ has been
developed in the paper. Effective optimization schemes in both
MDLVQ encoding and decoding have been accommodated in
the proposed system to achieve better rate and central/side dis-
tortions performance. From the appropriate vector construction
to the optimization of encoding parameters and optimized side
decoding, the proposed MDLVQ has demonstrated superior
rate-distortion performance to some other tested MD image
coders including the optimized MDSQ image coder in [5].
Furthermore, in view of the fast LVQ encoding and similar
computational complexity to the optimized MDSQ image coder
in [5], our MDLVQ scheme is a worthy choice for MD coding.
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