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ABSTRACT
Existing low-rank representation-based methods adopt a two-step
framework, which must employ an extra clustering method to gain
labels after representation learning. In this paper, a novel one-step
representation-based method, i.e., One-step Low-Rank Represen-
tation (OLRR), is proposed to capture multi-subspace structures
for clustering. OLRR integrates the low-rank representation model
and clustering into a unified framework. Thus it can jointly learn
the low-rank subspace structure embedded in the database and
gain the clustering results. In particular, by approximating the
representation matrix with two same clustering indicator matri-
ces, OLRR can directly show the probability of samples belong-
ing to each cluster. Further, a probability penalty is introduced
to ensure that the samples with smaller distances are more in-
clined to be in the same cluster, thus enhancing the discrimination
of the clustering indicator matrix and resulting in a more favor-
able clustering performance. Moreover, to enhance the robustness
against noise, OLRR uses the probability to guide denoising and
then performs representation learning and clustering in a recovered
clean space. Extensive experiments well demonstrate the robust-
ness and effectiveness of OLRR. Our code is publicly available
at:https://github.com/fuzhiqiang1230/OLRR.
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1 INTRODUCTION
Clustering is one of the main research of unsupervised learning and
can automatically divide the given samples into different clusters
with little or no prior knowledge [33, 34, 37, 38]. Since cluster-
ing can save a huge mount cost of manually labeled databases, it
has been widely used in many areas, like image processing [6, 41],
knowledge discovery [16] and data mining [23, 30]. Tomeet mission
requirements, many clustering methods are proposed as graph clus-
tering [20], weighted K-means [23], DBSCAN [7]. These clustering
methods can generally be classified into two groups, i.e., non-fuzzy
clustering and fuzzy clustering. Non-fuzzy clustering (also named
hard clustering) groups the samples so that each sample is only
assigned to one cluster [42]. Different from hard clustering, fuzzy
clustering [9] (also named soft clustering) assigns samples to all
the clusters with different probabilities, which can preserve more
clustering structure. However, these two kinds of methods rely
on the similarity among samples to group the samples, and their
performance depends on the quality of the similarity matrix. Thus,
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how to learn a discriminative similarity matrix has also become a
research focus.

Recently, some subspace theories have provided some new ways
to learn the similarity matrix by capturing the subspace structure.
Robust principal component analysis (RPCA) [3] is first proposed
to decompose the original data into a low-rank matrix, and a sparse
noise matrix can enhance the feature by removing the noise. How-
ever, RPCA assumes that all the samples are sampled from one
subspace, which ignores the multi-subspace structure. Motivated
by RPCA, low-rank representation (LRR) [14] is proposed with the
assumption that databases with 𝑐 clusters are sampled from 𝑐 in-
dependent subspaces, and the samples can be linearly represented
by the other samples in the same subspaces. However, LRR uses
nuclear norm to learn the global structure but ignores the local
structure [17].

To preserve the local structure, non-negative low-rank and sparse
(NNLRS) [43] representation is proposed to adopt the advantages
of nuclear norm and 𝐿1 norm, which can learn the global and lo-
cal structures in the database. In addition, NNLRS also constrains
that the elements in the representation matrix are greater than
zero, which makes this matrix can directly show the similarities
among the samples. Furthermore, non-negative sparse Laplacian
regularized low-rank representation (NSLLRR) [35] introduces a
laplacian regularization constructed by the 𝑘 nearest neighbors
and can learn the manifold structure embedded in the database.
However, selecting an ideal 𝑘 is still an open question, which affects
the performance of NSLLRR. To address this issue, Fei et al. [8] in-
troduce a distance penalty to LRR to learn the geometric structure
in Euclidean space. Based on LRRADP, adaptive weighted non-
negative low-rank representation (AWNLRR) [29] is proposed with
a sparseweightedmatrix to remove the noise, which reduces the bad
influence of noise and improves the clustering performance. Hierar-
chical weighted low-rank representation (HWLRR) [10] improves
the LRRADP differently. Based on 𝑘 nearest neighbors, HWLRR
defines the hierarchical weights to learn the hierarchical structures
in the data, capturing both global structure and the geometrical
structures.

All the low-rank representation methods mentioned above learn
the structures of the database without any prior knowledge, but in
many clustering tasks, the number of clusters is known. Motivated
by this, low-rank with adaptive graph regularization (LRRAGR) [27]
and robust spectral ensemble clustering (RSEC) [25] adopt spectral
constraints to ensure that the learned non-negative representation
matrices contain 𝑐 connection components. Thus the learned matri-
ces are more suitable for graph-based clustering methods like Ncut
[22]. Besides, double low-rank representation with projection dis-
tance penalty (DLRRPD) [11] utilizes the number of the clusters to
guide the feature projection to gain a better clustering performance.

Although the latest LRR-based methods begin to utilize the spec-
tral constraints to enhance the representation matrices, these meth-
ods still need extra clustering algorithms to gain the clustering
results. In general, LRR-based clustering methods can be summa-
rized into a two-step framework: 1) learn the representation matrix
and construct the similarity matrix; 2) gain the clustering results by
the clustering methods. Since these two steps are independent, the
learned matrix may not suit the clustering method. To address this
problem, we propose a novel LRR model, i.e., One-step Low-Rank

Representation (OLRR), to learn the subspace structures and gain
the clustering results simultaneously.

The main contributions of this paper are summarized as follows:
(1) Different from existing methods, to learn the clustering struc-

ture of databases and gain the clustering result directly, OLRR
integrates low-rank representation into clustering by approx-
imating the representation matrix with two same clustering
indicator matrices.

(2) Upon the clustering indicator matrix, a probability penalty
is introduced to encourage the samples in the same cluster
to be similar in the representation space, further improving
the discrimination of clustering indicator matrices.

(3) OLRR applies the probability penalty to denoising. Thus
the representation and clustering are performed in a clean
recovered space for better robustness and performance.

(4) An efficient algorithm is proposed to solve our model, and
extensive experimental results show the effectiveness and
robustness of our method.

2 NOTATIONS AND RELATEDWORK
Notations. The matrix is denoted by the uppercase letter, e.g.,
𝑋 . 𝑋:,𝑖 and 𝑋 𝑗,: are the 𝑖th column and 𝑗th row of the matrix 𝑋 ,
respectively. 𝑋𝑖, 𝑗 denotes the element which is on the 𝑖th row and
𝑗th column of 𝑋 . ∥𝑋𝑖,:∥2 is the 𝐿2 norm of the vector 𝑋𝑖,:. 𝑋𝑇 is
the transpose of 𝑋 . 𝑋−1 is the inverse of 𝑋 . tr(𝑋 ) is the trace of 𝑋 .
∥𝑋 ∥2,1, ∥𝑋 ∥1, ∥𝑋 ∥𝐹 , ∥𝑋 ∥∗ and ∥𝑋 ∥∞ denote 𝐿2,1 norm, 𝐿1 norm,
Frobenius norm, nuclear norm and infinite norm of 𝑋 , respectively.
1 is the column vector in which elements are 1. 𝐼 is the identity
matrix. ⊙ is the Hadamand product that demotes the element-wise
multiplication. a is a row vector, and a𝑖 is the 𝑖th element of a. 𝐴 =

Diag(a) is a diagonal matrix in which 𝐴𝑖,𝑖 = a𝑖 and ∀𝑖 ≠ 𝑗, 𝐴𝑖, 𝑗 = 0.
a = diag(A) is a row vector defined as a𝑖 = 𝐴𝑖,𝑖 .

2.1 Low-Rank Representation
For the given noiseless database 𝑋0 ∈ 𝑅𝑑×𝑛 sampled from 𝑐 inde-
pendent subspaces, the samples in the same subspace are linearly
dependent. Thus this database can be represented by itself with
a low-rank representation matrix. Therefore, LRR is proposed to
learn this low-rank representation matrix as

min
𝑍

∥𝑍 ∥∗, s.t.𝑋0 = 𝑋0𝑍 (1)

where 𝑍 is the representation matrix whose optimal solution is
𝑍 = 𝑉0𝑉𝑇

0 , and 𝑉0 can be obtained by skinny SVD of 𝑋0 as 𝑋0 =

𝑈0Σ0𝑉𝑇
0 . Since there is always noise in the data as 𝑋 = 𝑋0 + 𝐸0, an

error matrix is introduced to LRR, and the final LRR model is as
min
𝑍,𝐸

∥𝑍 ∥∗ + 𝜆∥𝐸∥1, s.t.𝑋 = 𝑋𝑍 + 𝐸 (2)

where 𝐸 is the noise fitting matrix, and 𝜆 > 0 is the balance param-
eter. LRR learns the low-rank subspace structure but ignores the
local structure of data.

2.2 Spectral Clustering
The representation matrix 𝑍 is usually handled by the clustering
methods to gain the clustering result. Spectral clustering (SC) is
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Figure 1: The core difference between OLRR and the exiting method is shown on the left. The flow diagram of our OLRR is
given on the right, where we show the relations of denoising, representation, probability penalty and clustering. (𝑃 denotes the
probability penalty as

∑
𝑖, 𝑗 ∥(𝑋:,𝑖 − 𝐸:,𝑖 ) − (𝑋:. 𝑗 − 𝐸:, 𝑗 )∥2

2𝐹𝑖,:𝐹
𝑇
𝑗,:). 𝑍 and 𝐹𝐹𝑇 are obtained by Jaffe.

often selected to assign labels for LRR-based methods. For the given
affinitymatrix𝐴, SC can partition the vertices in the𝐴 into 𝑐 disjoint
sets [4]. 𝑌 is defined as the cluster indicator matrix, and then the
SC can be formulated as

min
𝑌 ∈{0,1}

tr(𝑌𝑇 𝐿𝐴𝑌 ) (3)

where𝐿𝐴 = 𝐷𝐴−𝐴 is the Laplacianmatrix of𝐴, and𝐷𝐴 is the degree
matrix defined as 𝐷𝑖,𝑖 =

∑
𝑖 𝐴𝑖, 𝑗 . However, solving this objective

function is an NP-hard question. Thus, some methods this objective
function with some additional constraints, and Ratio Cut [21], Nor-
malized Cut (Ncut)[22] and Self-Balanced Min-Cut (SBMC)[5] are
three of them. Since SC does not influence the LRR-based methods,
the learned representation matrices can be unsuitable for SC [26],
leading to worse performance.

3 PROPOSED FORMULATION
OLRR is proposed to combine the clustering and LRR model to
improve the performance, and the core novelty and flow diagram
of OLRR are shown in Fig. 1.

3.1 Objective Function
A clustering indicator matrix 𝐹 ∈ 𝑅𝑛×𝑐 is defined that can show
the probability of samples belonging to each cluster. Because of the
physical meaning of 𝐹 , we constrain 𝐹 to satisfy

𝐹 ≥ 0, 𝐹𝑖,:1 = 1 (4)
where 𝐹𝑖, 𝑗 shows the probability of sample 𝑋:,𝑖 belonging to the
𝑗th cluster. Based on the definition of 𝐹 , we can easily learn the
probability of two different samples 𝑋:,𝑖 and 𝑋;, 𝑗 belonging to the
same cluster as

∑𝑐
𝑘=1 𝐹𝑖,𝑘𝐹 𝑗,𝑘 = 𝐹𝑖,:𝐹𝑇𝑗,:.

An ideal representation matrix 𝑍 can show the affinity among
samples, and the samples that have more contribution to represen-
tation have higher probabilities from the same cluster[24, 36]. To
obtain a better 𝐹 and 𝑍 , we hope that 𝐹𝑖,:𝐹𝑇𝑗,: −→ 0 if 𝑍𝑖, 𝑗 is small
and 𝐹𝑖,:𝐹𝑇𝑗,: −→ 1 if 𝑍𝑖, 𝑗 is large. We approximate the representation
matrix 𝑍 with two same fuzzy clustering matrices by ∥𝑍 − 𝐹𝐹𝑇 ∥2

𝐹
.

Thus, minimizing ∥𝑍 − 𝐹𝐹𝑇 ∥2
𝐹
can ensure that 𝑋:,𝑖 and 𝑋:, 𝑗 are

more likely to be sampled from the same cluster if 𝑋:,𝑖 has more
contribution in representing 𝑋:, 𝑗 , i.e., 𝑍𝑖, 𝑗 is larger. Moreover, to
preserve the local structure, a probability penalty is introduced as∑
𝑖, 𝑗 ∥𝑋:,𝑖 −𝑋:, 𝑗 ∥2

2𝐹𝑖,:𝐹
𝑇
𝑗,:, where ∥𝑋:,𝑖 −𝑋:, 𝑗 ∥2

2 denotes the Euclidean
distance. Minimizing this term can preserve the local geometric
structure by automatically assigning a higher probability to the
samples with a smaller distance. And then, the initial problem of
OLRR in the noise-free case can be defined as

min
𝑍,𝐹

∑︁
𝑖, 𝑗

∥𝑋:,𝑖 − 𝑋:. 𝑗 ∥2
2𝐹𝑖,:𝐹

𝑇
𝑗,: + 𝜆1∥𝑍 ∥∗ +

𝜆2
2 ∥𝑍−

𝐹𝐹𝑇 ∥2
𝐹 , s.t.𝑋 = 𝑋𝑍, 𝐹 ≥ 0, 𝐹𝑖,:1 = 1, diag(𝑍 ) = 0

(5)

where 𝜆1 > 0 and 𝜆2 > 0 are two parameters. By minimizing the
clustering constraint, i.e., approximating 𝑍 using 𝐹𝐹𝑇 , one can
avoid the trivial solution as 𝑍𝑖,: = 0. diag(𝑍 ) = 0 is used to avoid
the bad influence of the self-representation.

However, databases always contain various noise and errors in
real applications [19, 39], which inaccurate the learned representa-
tion and decreases the performance. To tackle this problem, OLRR
adopts a robust joint representation. In particular, OLRR first de-
noises the original 𝑋 by correcting errors with 𝐿1 norm and then
performs representation learning and clustering in a recovered
clean space 𝑋 − 𝐸, which leads to the final objective function:

min
𝑍,𝐹,𝐸

∑︁
𝑖, 𝑗

∥(𝑋:,𝑖 − 𝐸:,𝑖 ) − (𝑋:. 𝑗 − 𝐸:, 𝑗 )∥2
2𝐹𝑖,:𝐹

𝑇
𝑗,:+

𝜆1∥𝑍 ∥∗ +
𝜆2
2 ∥𝑍 − 𝐹𝐹𝑇 ∥2

𝐹 + 𝜆3∥𝐸∥1, s.t.(𝑋 − 𝐸)

= (𝑋 − 𝐸)𝑍, 𝐹 ≥ 0, 𝐹𝑖,:1 = 1, diag(𝑍 ) = 0

(6)

where 𝜆3 ≥ 0 is the balance parameter. Minimizing
∑
𝑖, 𝑗 ∥(𝑋:,𝑖 −

𝐸:,𝑖 )−(𝑋:. 𝑗 −𝐸:, 𝑗 )∥2
2𝐹𝑖,:𝐹

𝑇
𝑗,: and ∥𝑍−𝐹𝐹𝑇 ∥2

𝐹
can hold three additional

good properties:
• The noise is removed first, improving the robustness of OLRR.
Besides, the representing and clustering perform in the clean
data space, which improves the clustering performance.

• The processing of denoising is guided by the clustering indi-
cator matrix. With the constraint (𝑋 − 𝐸) = (𝑋 − 𝐸)𝑍 and
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∑
𝑖, 𝑗 ∥(𝑋:,𝑖 − 𝐸:,𝑖 ) − (𝑋:. 𝑗 − 𝐸:, 𝑗 )∥2

2𝐹𝑖,:𝐹
𝑇
𝑗,:, the samples, which

have higher possibility from the same cluster, will also be
ensured that they are similar in the representation space. In
this way, the local structure can also be captured.

• The probability penalty can be reformed as ∥𝐷𝑋−𝐸⊙(𝐹𝐹𝑇 )∥1,
where (𝐷𝑋−𝐸 )𝑖, 𝑗 = ∥(𝑋:,𝑖 − 𝐸:,𝑖 ) − (𝑋:. 𝑗 − 𝐸:, 𝑗 )∥2

2. Conse-
quently, this term can improve the discrimination of the
clustering indicator matrix.

3.2 Clustering via the Clustering Indicator
Matrix

The clustering indicator matrix 𝐹 can be obtained by solving the
objective function Eq. (6). Since 𝐹𝑖, 𝑗 denotes the membership of
𝑋:,𝑖 to the 𝑗th cluster, the label of 𝑋:,𝑖 can be obtained by finding
the most related cluster, in other words, finding the index of max
elements in 𝐹𝑖,:. This processing can be formulated as

r𝑖 = 𝑘,where 𝐹𝑖,𝑘 = ∥𝐹𝑖,:∥∞ (7)

where r is the label vector of 𝑋 .
Next, the optimization procedures are given.

3.3 Optimization
In this subsection, inexact Augmented Lagrange Multiplier method
(ALM) [1] is used to solve the objective function. For convenience,
we first rewrite the original formulation Eq. (6) into the following
function

min
𝑍,𝐸,𝐹,𝐽 ,𝑈 ,𝐶1,𝐶2,𝐶3

∑︁
𝑖, 𝑗

∥𝑈:,𝑖 −𝑈:, 𝑗 ∥2
2𝐹𝑖,:𝐹

𝑇
𝑗,: + 𝜆1∥ 𝐽 ∥∗

+𝜆2
2 ∥𝑍 − 𝐹𝐹𝑇 ∥2

𝐹 + 𝜆3∥𝐸∥1 +
𝜇

2 (∥𝑋 −𝑈 − 𝐸+
𝐶1
𝜇
∥2
𝐹 + ∥𝑈 −𝑈𝑍 + 𝐶2

𝜇
∥2
𝐹 + ∥𝑍 − 𝐽 + 𝐶3

𝜇
∥2
𝐹 )

(8)

where 𝐽 and 𝑈 are two alternative variables, 𝐶1, 𝐶2 and 𝐶3 are
three Lagrange multipliers. 𝜇 is the penalty parameter. Then, this
problem can be solved by following steps.

Fix others, update 𝐸:When other variables are given, 𝐸 can be
obtained by minimizing the following formulation as

min
𝐸

𝜆3∥𝐸∥1 +
𝜇

2 ∥𝑈 − 𝑋 + 𝐸 + 𝐶1
𝜇
∥2
𝐹 (9)

and this sub-problem has a closed-form solution [13] as

𝐸 = Ω 𝜆3
𝜇

(𝑋 −𝑈 + 𝐶1
𝜇
) (10)

where Ω is the shrinkage operator [13].
Fix others, update 𝐽 :With the other variables fixed, 𝐽 can be

calculated by

min
𝐽

𝜆1∥ 𝐽 ∥∗ +
𝜇

2 ∥𝑍 − 𝐽 + 𝐶2
𝜇
∥2
𝐹 (11)

This problem has a closed-form solution as

𝐽 = Θ 𝜆1
𝜇

(𝑍 + 𝐶2
𝜇
) (12)

where Θ is the singular value thresholding (SVT) shrinkage opera-
tion [15].

Fix others, update 𝑍 : By fixing the other variables, 𝑍 can be
obtained by solving the following subproblem

min
𝑍

𝜆2
2 ∥𝑍 − 𝐹𝐹𝑇 ∥2

𝐹 + 𝜇

2 (∥𝑈 −𝑈𝑍 + 𝐶2
𝜇
∥2
𝐹

+∥𝑍 − 𝐽 + 𝐶3
𝜇
∥2
𝐹 ), s.t.diag(𝑍 ) = 0

(13)

The solution without constraint 𝑍 can be obtained as
𝑍 = ((𝜆2 + 𝜇)𝐼 + 𝜇𝑈𝑇𝑈 )−1 (𝜆2 (𝐹𝐹𝑇 − 𝐼 )+

𝜇 (𝑈𝑇 (𝑈 + 𝐶2
𝜇
) + 𝐽 − 𝐶3

𝜇
))

(14)

Then, the final solution of 𝑍 can be obtained as

𝑍 = 𝑍 − Diag(diag(𝑍 )) (15)

Fix others, update 𝑈 : When the other variables are fixed, 𝑈
can be learned by minimizing the following problem

min
𝑈

∑︁
𝑖, 𝑗

∥𝑈:,𝑖 −𝑈:, 𝑗 ∥2
2𝐹𝑖,:𝐹

𝑇
𝑗,: +

𝜇

2 (∥𝑋 −𝑈 − 𝐸+

𝐶1
𝜇
∥2
𝐹 + ∥𝑈 −𝑈𝑍 + 𝐶2

𝜇
∥2
𝐹 )

(16)

For simplify, this problem can be written as

min
𝑈

2tr(𝑈𝐿𝐹𝑈
𝑇 ) + 𝜇

2 (∥𝑋 −𝑈 − 𝐸 + 𝐶1
𝜇
∥2
𝐹+

∥𝑈 −𝑈𝑍 + 𝐶2
𝜇
∥2
𝐹 )

(17)

where 𝐿𝐹 is the Laplacian matrix of 𝐹𝐹𝑇 . Then,𝑈 can be obtained
as

𝑈 = 𝜇 (𝑋 − 𝐸 + 𝐶1
𝜇

− 𝐶2
𝜇
(𝐼 − 𝑍𝑇 )) (4𝐿𝐹+

𝜇𝐼 + 𝜇 (𝐼 − 𝑍 ) (𝐼 − 𝑍𝑇 ))−1
(18)

Fix others, update 𝐹 : As for 𝐹 , it can be obtained by following
problem

min
𝐹

tr(𝐷𝑇
𝑈 𝐹𝐹𝑇 ) + 𝜆2∥𝑍 − 𝐹𝐹𝑇 ∥2

𝐹 ,

s.t.𝐹 ≥ 0, 𝐹𝑖,:1 = 1
(19)

where 𝐷𝑈 is the distance matrix defined as (𝐷𝑈 )𝑖, 𝑗 = ∥𝑈:,𝑖 −𝑈:, 𝑗 ∥2
2.

We use ALM to solve this subproblem, and for convenience, an
additional variable 𝐺 is introduced to separate the problem as

min
𝐹,𝐺,𝐶

tr(𝐷𝑇
𝑈 𝐹𝐺𝑇 ) + 𝜆2∥𝑍 − 𝐹𝐺𝑇 ∥2

𝐹+

𝜎

2 ∥𝐹 −𝐺 + 𝐶

𝜎
∥2
𝐹 , s.t.𝐹 ≥ 0, 𝐹𝑖,:1 = 1

(20)

where 𝐶 is the Lagrange multiplier, and 𝜎 is the penalty parameter.
Then, 𝐺 can be solved with 𝐹 fixed as

𝐺 = (−𝐷𝑈 𝐹 + 𝜆2𝑍
𝑇 𝐹 + 𝜇 (𝐹 + 𝐶

𝜎
))𝐿−1

1 (21)

where𝐿1 = 𝜆2𝐹𝑇 𝐹+𝜎𝐼 .With a given𝐺 , a latent 𝐹 without constraint
can be calculated as follows.

min
𝐹

tr(𝐷𝑇
𝑈 𝐹𝐺𝑇 ) + 𝜆2∥𝑍 − 𝐹𝐺𝑇 ∥2

𝐹+

𝜎

2 ∥𝐹 −𝐺 + 𝐶

𝜎
∥2
𝐹

(22)
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𝐹 can be directly obtained as

𝐹 = (−𝐷𝑈𝐺 + 𝜆2𝑍𝐺 + 𝜎 (𝐺 − 𝐶

𝜎
))𝐿−1

2 (23)

where 𝐿2 = 𝜆2𝐺𝑇𝐺 + 𝜎𝐼 , and then 𝐹 can be obtained by
min

𝐹 ≥0,𝐹𝑖,:1=1
∥𝐹 − 𝐹 ∥2

𝐹 (24)

This problem can be solved row by row, i.e.,
𝐹𝑖,: = max(𝜉1 + 𝐹𝑖,:, 0) (25)

where 𝜉 is the Lagrangian multiplier defined as
𝜉 = (1 + 𝐹𝑖,:1)/(𝑐 − 1) (26)

The other variables are updated as follows.
𝐶 = 𝐶 + 𝜎 (𝐹 −𝐺) (27)
𝜎 = min(𝜌𝜎, 𝜎max) (28)

where 𝜌 and 𝜎max are two constants and denote the learning rate
and upper bound of 𝜎 , respectively. Updating 𝐹 is summarized as
Algorithm 1.

Algorithm 1: Updating 𝐹

Input: 𝐷𝑈 , 𝑍
Output: 𝐹

1 Initialization:𝐺 = 𝐹 = 𝐶 = 0, 𝜎 = 0.01, 𝜌 = 1.2, 𝜎max = 105.
2 while not converged do
3 Fix others, update 𝐺 by Eq. (21);
4 Fix others, update 𝐹 by Eqs. (23) and (25);
5 Fix others, update 𝜉 by Eq. (26);
6 Update 𝐶 and 𝜎 by Eqs. (27) and (28);
7 Convergence check: if ∥𝐹 −𝐺 ∥∞ < 10−5, stop.

Update the other variables:

𝐶1 = 𝐶1 + 𝜇 (𝑋 −𝑈 − 𝐸) (29)
𝐶2 = 𝐶2 + 𝜇 (𝑈 −𝑈𝑍 ) (30)
𝐶3 = 𝐶3 + 𝜇 (𝑍 − 𝐽 ) (31)
𝜇 = min(𝜌𝜇, 𝜇max) (32)

where 𝜌 denotes the learning rate, and 𝜇max is the upper bound of
𝜇, respectively. Finally, the algorithm to solve OLRR is summarized
as Algorithm 2.

4 ANALYSIS OF OLRR
4.1 Computational Complexity Analysis
As shown in Algorithm 2, solving OLRR contains five main steps,
and we will analyze each step to show the computational complex-
ity of it. 𝐸 is updated by singular value thresholding, and thus the
computational complexity of updating 𝐸 is O(𝑛3). Updating 𝐽 uses
eigen-decomposition and its computational complexity is O(𝑟𝑛2),
where 𝑟 denotes the number of the selected eigenvectors [31]. In-
verse operation is the main computational complexity of updating
𝑍 , 𝑈 and 𝐹 , resulting in that their computational complexities are
O(𝑛3), O(𝑛3) and O(2𝑡1 (𝑐2𝑛 + 𝑐𝑛2)), respectively, where 𝑡1 is the
number of Algorithm 1 iteration. Finally, we obtain the whole com-
putational complexity, i.e., O(𝑡2 (2𝑡1 (𝑐2𝑛 +𝑐𝑛2) + 3𝑛3 +𝑟𝑛2)), where
𝑡2 is the iteration number of Algorithm 2.

Algorithm 2: Solving OLRR
Input: Database 𝑋 , the number of clusters 𝑐 and the tuning

parameters 𝜆1, 𝜆2, 𝜆3.
Output: 𝑍 , 𝐹 , 𝐸, r.

1 Initialization: 𝑍 constructed by the 10-nearest neighbor
graph, 𝐸 = 0,𝑈 = 𝑋 , 𝐹 = 0, 𝐽 = 𝑍 , 𝐶1 = 0, 𝐶2 = 0, 𝐶3 = 0,
𝜇 = 0.01, 𝜌 = 1.2, 𝜇max = 105.

2 while not converged do
3 Fix others, update 𝐸 by Eq. (10);
4 Fix others, update 𝐽 by Eq. (12);
5 Fix others, update 𝑍 by Eqs. (14) and (15);
6 Fix others, update 𝑈 by Eq. (18);
7 Fix others, update 𝐹 as Algorithm 1;
8 Update 𝐶1, 𝐶2, 𝐶3 and 𝜇 by Eqs. (29) to (32);
9 Convergence check: if

max(∥𝑋 −𝑈 − 𝐸∥∞, ∥𝑈 −𝑈𝑍 ∥∞, ∥𝑍 − 𝐽 ∥∞) < 10−5,
stop.

10 Gain the clustering result by Eq. (7).

4.2 Convergence Analysis
As presented before, the objective formulation is solved by the
ALM-style method with five blocks, but it is still hard to prove the
strict convex for ALM-style methods with more than two blocks
[12, 28]. However, optimizing each block will decrease the value of
the objective function. Thus, the loss of the objective formulation
will also monotonically decrease with fixing others and updating
each variable alternately. In this section, we prove the convergence
of OLRR by experiments in the following. The objective function
loss versus the iteration number on the Auto and Cars database is
plotted in Fig. 2. As shown in Fig. 2, the loss of the objective function,
i.e., Obj = (∑𝑖, 𝑗 ∥(𝑋:,𝑖 − 𝐸:,𝑖 ) − (𝑋:. 𝑗 − 𝐸:, 𝑗 )∥2

2𝐹𝑖,:𝐹
𝑇
𝑗,: + 𝜆1∥𝑍 ∥∗ +

𝜆2
2 ∥𝑍 − 𝐹𝐹𝑇 ∥2

𝐹
+ 𝜆3∥𝐸∥1)/∥𝑋 ∥𝐹 , will monotonically decrease and

fast converges to a local optimum, which can show the convergence
of OLRR.

(a) Auto (b) Cars

Figure 2: Objective function loss versus iteration number of
OLRR on the (a) Auto and (b) Cars.

5 EXPERIMENTS AND ANALYSIS
5.1 Experimental Settings
Compared methods. Some most related and state-of-the-art LRR
methods, including LRR, NSLLRR [35], AWNLRR [29], LRRAGR
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Table 1: Clustering results on real databases

Methods Metric Auto Cars Control Glass Solar Isolet Yeast Dig USPS Jaffe Yale YaleB
SSC

ACC

40.00 61.99 54.11 48.59 40.55 54.29 30.99 14.07 54.52 96.71 52.72 81.23
LRR 40.98 62.76 48.17 53.27 51.39 55.96 30.26 79.13 70.95 99.53 46.06 67.43
NSLLRR 41.95 63.52 65.00 57.48 54.80 59.36 27.09 67.78 65.47 99.53 54.55 38.48
AWNLRR 40.98 66.33 53.17 54.67 55.11 58.40 39.49 79.86 72.10 98.59 55.15 88.06
LRRAGR 39.02 62.76 56.83 55.61 45.51 54.49 30.39 59.32 70.67 98.59 56.36 87.04
BDR 41.95 67.35 55.17 56.54 57.59 61.60 33.09 81.68 67.59 100 55.15 70.46
RSEC 44.39 63.01 54.33 54.67 56.04 62.95 38.01 79.19 68.13 100 55.15 88.52
LapNR 41.46 57.14 37.83 53.74 52.63 58.65 39.22 76.02 56.54 98.12 55.15 69.80
HWLRR 37.56 67.86 67.17 51.87 50.77 65.77 40.30 87.37 65.87 96.71 55.15 62.14
DLRRPD 46.83 68.37 76.33 58.41 54.80 67.37 38.54 88.81 69.63 100 55.15 63.24
LRSSC 45.14 65.14 72.73 56.34 55.62 65.04 42.56 83.15 71.26 100 55.15 82.65
SSRSC 43.41 66.33 61.36 54.67 57.28 58.01 46.16 81.30 70.47 100 55.15 86.04
OLRR 47.04 75.77 81.67 62.15 60.37 68.53 47.44 89.20 73.80 100 58.18 89.23

SSC

Purity

43.90 62.50 64.33 61.32 47.99 52.15 31.47 14.30 63.92 96.71 52.73 81.48
LRR 45.85 63.01 48.50 60.75 56.66 55.96 31.33 81.75 76.96 99.53 46.06 67.48
NSLLRR 48.78 63.78 66.83 59.81 63.16 59.36 32.14 73.29 58.36 99.53 54.55 38.77
AWNLRR 47.32 68.88 60.83 57.01 57.89 58.40 41.51 81.36 78.63 98.59 55.15 88.69
LRRAGR 41.95 64.54 66.67 60.28 48.92 54.49 31.47 61.77 76.24 98.59 56.36 86.27
BDR 47.32 66.58 51.67 59.81 57.89 61.60 32.08 83.16 71.52 100 55.15 70.55
RSEC 45.85 63.27 60.00 57.01 61.30 62.95 41.51 81.64 74.53 100 55.15 88.65
LapNR 47.80 65.05 50.00 63.08 60.37 58.65 49.60 77.46 66.35 98.12 55.15 70.59
HWLRR 41.95 68.88 74.83 62.15 58.51 65.77 48.52 87.37 58.35 96.71 55.15 61.92
DLRRPD 47.80 68.62 76.33 62.62 60.68 67.37 49.60 88.81 75.63 100 55.15 64.27
LRSSC 46.52 67.98 75.36 58.62 60.57 65.33 47.53 84.46 77.82 100 55.15 81.13
SSRSC 45.78 66.33 61.83 62.55 60.99 58.01 46.93 81.30 77.34 100 55.15 86.04
OLRR 49.53 75.77 82.41 63.08 62.54 68.53 48.32 89.20 79.18 100 58.18 89.23

SSC

Fscore

33.32 62.58 64.49 42.17 31.05 54.29 36.30 10.15 43.97 93.62 34.28 49.58
LRR 34.05 63.17 57.25 40.22 44.82 50.60 30.93 72.85 64.32 99.05 28.25 46.17
NSLLRR 33.48 63.67 62.11 48.70 45.87 51.75 30.35 63.23 56.21 99.03 36.79 13.11
AWNLRR 32.46 66.04 53.47 49.17 46.65 51.53 28.76 76.90 68.14 97.11 36.15 85.13
LRRAGR 34.20 59.25 68.10 51.05 37.84 50.51 32.94 45.25 66.46 97.10 38.68 84.38
BDR 32.76 60.81 67.63 50.96 51.97 53.27 31.12 74.58 64.57 100 35.07 38.08
RSEC 35.16 58.92 57.61 48.57 47.81 53.43 31.75 72.32 67.34 100 35.07 80.81
LapNR 32.36 50.54 54.28 42.63 45.62 52.24 29.39 71.70 50.88 96.32 35.40 53.64
HWLRR 32.22 66.26 70.15 43.60 44.20 54.95 30.56 82.80 67.04 93.95 38.57 42.08
DLRRPD 36.70 66.18 68.85 47.09 44.55 56.15 28.77 83.22 66.53 100 38.39 46.35
LRSSC 35.57 67.15 69.53 47.24 46.36 53.56 29.43 78.24 68.25 100 38.39 79.24
SSRSC 34.08 59.64 56.34 42.99 47.16 51.94 32.60 73.77 67.34 100 38.57 84.25
OLRR 38.23 75.66 72.83 51.20 49.75 56.81 34.60 84.45 69.89 100 39.86 86.23

[27], RSEC [25], BDR [18], LapNR [40], HWLRR [10], DLRRPD [11]
and SSRSC [32], are selected as the compared methods to show the
effectiveness of our method. Besides, some sparse subpace methods,
i.e., SSC and LRSSC [2] are also used as comparison methods. The
representation matrices learned by the compared methods are sym-
metrized by 𝐴 = ( |𝑍 | + |𝑍 |𝑇 )/2 and handled by Ncut to gain the
final clustering results. Moreover, since these methods are sensitive
to the super parameter, we vary each parameter in a wide range to
find the best combination. It should be pointed out that the learned
representation matrices of compared LRR-based methods are stable
with the fixed parameter, but the clustering performance is unstable

because the performance of Ncut depends on initializations. Thus,
for these compared methods, we report the best results of ten repe-
titions with the best parameters. As for our method, we ran once
with the best parameters because it gained stable clustering results.

Databases. In this section, twelve real databases are used to
evaluate the performance of all the methods mentioned above.
These databases include seven UCI databases: Auto, Cars, Control,
Glass, Solar, Isolet and Yeast, two digit databases: Dig and USPS,
and three face databases: Jaffe, Yale and YaleB.

Evaluation metrics. Clustering accuracy (ACC), purity and
F-score are used as the evaluation metrics.
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(a) Jaffe (b) Yale

Figure 3: Clustering accuracy versus different percentages salt & pepper noise on Jaffe and Yale.

Table 2: Description of the databases

Type Database # Class # Dim # Sample

UCI

Auto 6 25 205
Cars 3 8 392

Control 6 60 600
Glass 6 9 214
Solar 6 12 323
Isolet 2 617 1560
Yeast 10 1470 1484

Digit
Dig 10 64 1797
USPS 10 256 1000

Face
Jaffe 10 676 213
Yale 15 1024 165
YaleB 38 1024 2414

5.2 Clustering Results and Analysis
From the results in Tab. 1, we can conclude as:

• Our method gains the best performance on these databases.
Compared with the second-best method on Cars and Control,
our method can achieve about 7.4% and 5.5% improvement
in terms of ACC, respectively.

• AWNLRR, LRRAGR, DLRRPD and OLRR often achieve bet-
ter performance than NSLLRR, proving that preserving the
structure by distance penalty is more effective than the 𝑘
nearest neighbors.

• Compared with other methods, LRRAGR, BDR, RSEC, DLR-
RPD and OLRR perform better on most databases because
they utilize the number of clusters to constrain the represen-
tation. OLRR performs best because it combines clustering
to boost the performance, proving the effectiveness of com-
bining clustering.

• Compared with DLRRPD that projects the features to a better
space to improve the performance, OLRR can achieve better
clustering results without feature projection. DLRRPD uses
the learned representation to guide the feature projection,
but OLRR uses the probability to guide the representation.
We can find that the probability is more effective than the
representation matrix.

5.3 Clustering Against Noise
OLRR removes the noise and performs the representation in the
clean space, improving the robustness of the model. Thus, in this
section, we use two databases, i.e., Jaffe and Yale, to show the
robustness of OLRR against the salt & pepper noise. All methods
are performed on these two databases with different percentage
noise, and the percentages of the noise are [0, 10, 20, 30, 40, 50]. ACC
is used to evaluate the performance, and the final performance is
shown in Fig. 3. As shown in Fig. 3, all the methods perform worse
as the level of the occupation increase. Besides, our OLRR gains the
best performance with all level noise, which shows OLRR is more
robust than comparison methods against salt & pepper noise.

5.4 Ablation Experiments
Some ablation experiments are conducted to evaluate the effective-
ness of each improvement. We use 𝐼1, 𝐼2 and 𝐼3 to denote the three
main improvements of our model, where 𝐼1 denotes denoising, 𝐼2
is the ∥𝑍 − 𝐹𝐹𝑇 ∥2

𝐹
and 𝐼3 is the probability penalty. The effective-

ness of each improvement is evaluated by performing on databases
without this improvement.

As shown in Tab. 3, we can find that the performance of OLRR-
𝐼𝑖 is worse than OLRR, which can show the effectiveness of each
improvement. Specifically, OLRR-𝐼2 gains the worst performance
in most cases because the learned clustering indicator matrix 𝐹 can
only capture the distance relationship without the constraint ∥𝑍 −
𝐹𝐹𝑇 ∥2

𝐹
. Thus, OLRR-𝐼2 has significant performance degradations on

Jaffe10% and Jaffe20% because the distance relationship is destroyed.
Compared with the performance on Jaffe, OLRR-𝐼1 has a larger
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Table 3: Effectiveness of each improvement measured by
ACC, and OLRR−𝐼𝑖 denotes the performance without 𝐼𝑖 .

Dataset OLRR−𝐼1 OLRR−𝐼2 OLRR−𝐼3 OLRR
Auto 44.38 33.17 42.44 47.04
Cars 71.17 62.50 71.19 75.77
Jaffe 97.18 96.71 87.32 100

Jaffe10% 86.85 71.83 85.92 98.12
Jaffe20% 84.98 64.79 78.87 93.90

∗Jaffe10% and Jaffe20% denote the Jaffe with 10% and 20% salt & pepper noise respectively.

performance degradation on Jaffe10% and Jaffe20%, which can show
that 𝐼1, i.e., denoising, can enhance the robustness of our model.

5.5 Parameter Sensitivity and Selection
From the objective function Eq. (6), we can find that there are three
parameters, i.e., 𝜆1, 𝜆2 and 𝜆3. These parameters balance the effect of
different terms, where 𝜆1, 𝜆2 and 𝜆3 balance the low-rank constraint,
matrix approximation and the noise fitting, respectively. Since
OLRR with different combination of three parameters achieves
different performance, we test the sensitivity of each parameter to
select the best combination of parameter. For convenience, OLRR
is performed on the Cars database with the different combination
of three parameters, and each parameter is varied in the range
[10−5, 10−4, ..., 103, 104, 105]. First, 𝜆1 is fixed as 𝜆3 = 100, and 𝜆1
and 𝜆2 are tuned. Thus, the clustering performance on different
combinations of 𝜆1 and 𝜆2 is shown in Fig. 4(a). From Fig. 4(a), it
can be found that OLRR can deliver good results 𝜆2 ≥ 10−2 and
OLRR is robust on 𝜆1. Then, we fix 𝜆1 = 10−2 and 𝜆2 = 10−1, and
OLRR performs with different 𝜆3 to show the influence of 𝜆3. As
shown in Fig. 4(b), OLRR can deliver good results with 𝜆3 ≤ 103.
Moreover, one can find that 𝜆2 and 𝜆3 are insensitive in some extent,
thus one can select the two parameters 𝜆2 and 𝜆3 from the range
of [10−2, 103] and [10−3, 102] to achieve a good performance.

(a) 𝜆1 and 𝜆2 . (b) 𝜆3

Figure 4: ACC of our method w.r.t (a) 𝜆1 and 𝜆2 with 𝜆3 = 1
and (b) 𝜆3 with 𝜆1 = 10−2 and 𝜆2 = 10−1 on the Cars.

5.6 Effectiveness of Denoise
In our model, the constraint, i.e., (𝑋 − 𝑍 ) = (𝑋 − 𝑍 )𝑍 , removes
the noise of data. Thus, our model is robust against the salt &
pepper noise. In this subsection, we give some examples to show
the effectiveness of denoise. The noised images, learned noise, and

recovered images are obtained by 𝑋 , 𝐸 and 𝑋 −𝐸 and are visualized
as Fig. 5, where Jaffe with 30% and 50% salt & pepper noise are used
as examples. It is obvious that our method can remove the noise
and effectively recover the noise image.

(a) Noise image (b) Learned noise 𝐸 (c) Recovered image

(d) Noise image (e) Learned noise 𝐸 (f) Recovered image

Figure 5: Noise image, learned noise and recovered image
obtained from Jaffe with 30% and 50% salt & pepper noise.

6 CONCLUSION
This paper proposes a novel LRR based model, i.e., One-step Low-
Rank Representation (OLRR), for clustering. It approximates the
representation matrix with two same clustering indicator matri-
ces, thus gaining the clustering results directly without additional
clustering methods. Upon such a clustering indicator matrix, a
probability penalty is introduced to capture the local structure of
data, resulting in a more discriminative clustering indicator ma-
trix. Finally, by removing the noise occupied in the original data,
representation and clustering are then performed in a clean space,
thus facilitating a more robust model with better performance. The
effectiveness of our OLRR has been evaluated on several benchmark
databases for data clustering. The clustering of the data with salt &
pepper noise can also show the robustness of our method.
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