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a b s t r a c t

Image stitching is a classical and challenging technique in computer vision, which aims to generate an
image with a wide field of view. The traditional methods heavily depend on feature detection and require
the feature points to be dense and evenly distributed in the image, leading to poor robustness in low-
texture scenes. Learning methods are rarely studied due to the unavailability of ground truth stitched
results, showing unreliable performance on real-world datasets. In this paper, we propose an image
stitching learning framework, which consists of a multi-scale deep homography module and an edge-
preserved deformation module. First, we design a multi-scale deep homography module to estimate
the accurate homography progressively from coarse to fine. After that, an edge-preserved deformation
module is designed to learn the deformation rules of image stitching from edge to content, generating
the stitched image with artifacts eliminated. Besides, the proposed supervised learning framework can
stitch images of arbitrary resolutions and demonstrate good generalization capability in real-world
images. Experiments show that our superiority to the existing homography solutions and image stitching
algorithms.

� 2021 Elsevier B.V. All rights reserved.
1. Introduction

Due to the limited field-of-view (FOV), a single photo may not
be able to display the complete region of interest (ROI). To tackle
this problem, a stitched image of a wider FOV can be obtained by
stitching images from different viewing positions, which plays an
important role in various applications such as autonomous driving
[44,21], immersive communication [16], virtual reality (VR) [1,17].

Traditional image stitching methods follow similar steps: fea-
ture detection and matching, image registration, and image com-
position. These methods eliminate the ghosting effects caused by
parallax by proposing a spatial adaptive warping model to align
the contents [34,11,30,46,5,4,6,27,25,23,32,24,26] or searching an
optimal seam to composite the stitched image [9,47,28,12]. How-
ever, the performance of these methods greatly depends on the
number and distribution of hand-craft feature points, often leading
to failures in low-texture scenarios.

The existing deep learning solutions are still in development.
They achieve this technology by training an image stitching net-
work on a synthetic stitching dataset in a supervised manner
[37,50]. Deep learning solutions can work robustly in low-texture
scenarios due to the robust deep features extracted by the neural
network. However, the performance of this model on real-world
datasets is unsatisfactory, and it cannot handle input of arbitrary
resolution.

Considering those above traditional and learning methods’ lim-
itations, we propose a novel deep image stitching framework to
stitch images of arbitrary resolutions from arbitrary shooting posi-
tions in a flexible learning wary. The proposed framework is com-
posed of a multi-scale deep homography module and an edge-
preserved deformation module. The first module achieves the
homography estimation and image registration, and the remaining
module stitches the images from edge to content.

In deep homography module, we found the following two com-
mon problems in the existing learning methods [8,36,48,22]: 1)
Only the feature maps learned by the last convolutional layer are
adopted to predict the homography, while they ignore the features
of different scales learned by other convolutional layers. 2) Learn-
ing the matching relationship of features by convolutional layers is
inefficient, making these methods fail to work in scenes of low
overlap rates. In these methods, the receptive fields of convolu-
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tional layers are limited by the kernel size, while the distance
between matched features can be much longer than it.

To address the above problems, we propose a feature-level
multi-scale deep homography network. Specifically, we first adopt
the feature pyramid to extract multi-scale features and every scale
of features can contribute to the homography regression. Then we
extract the feature matching through a scheme of feature correla-
tion instead of convolutional layers. In particular, the feature
matching is extracted from global to local, thus the homography
can be estimated from coarse to fine.

Subsequently,wedesign an edge-preserveddeformationmodule
to stitch thewarped images (Fig. 1 (b)) that can be obtained from the
previous module. Traditional image fusion strategy eliminates the
misalignments (shown in Fig. 1 (c)) by assigning adaptive weights
to thewarped images to hide the artifacts. Different from it, the pro-
posed deformation module learns to composite the stitched image
in two steps: 1) The network tends to remove the misalignments
at the cost of edge discontinuity between the warped reference
image and the non-overlapping areas of the warped target image
(shown in Fig. 1 (d)). 2) Learn to correct discontinuity by pixel-
level deformation from edge to content (shown in Fig. 1 (e)).

In experiments, we evaluate our method on the tasks of homog-
raphy estimation and image stitching, demonstrating our robust-
ness and efficacy. The contributions of this paper are
summarized as follows:

� We design a multi-scale deep homography model, which inte-
grates the feature pyramid and feature correlation simultane-
ously, enabling our robustness and efficacy in the scenes of
low overlap rates.

� We propose an edge-preserved deformation network to stitch
the warped images, eliminating the ghosting effects and keep-
ing the edge continuity of the stitched image simultaneously.
Fig. 1. The illustration of proposed edge-preserved image stitching strategy. (a)(b) demo
align the large-baseline inputs coarsely. (c)(d)(e) exhibit the effect of the edge-pres
discontinuous edges simultaneously.
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� In the presence of fully connected layers, we designed a flexible
mechanism combining image scaling and homography scaling
to stitch images of arbitrary resolution.

2. Related work

2.1. Traditional image stitching

Traditional image stitching methods can be simply divided into
the following two categories.

Spatial Adaptive Warping. Traditional schemes stitch images
with a single global homography, causing noticeable ghosting
effects [13]. To construct image panoramas with fewer artifacts,
Gao et al. proposed a dual-homography method (DHW) to repre-
sent the warpings of the foreground and background, respectively
[11]. To align different areas in the image domain, spatially adap-
tive warpings are calculated to stitch images as-projectively-as-
possible (APAP) in the work of Zaragoza et al. [46]. Dividing pic-
tures into dense grids, APAP calculates the spatially-adaptive
warpings using moving DLT to seamlessly bridge image regions
that are inconsistent with the projective model. However, the
warping change of APAP in the adjacent areas is assumed to be
small. In fact, the depth of the adjacent areas may change dramat-
ically, which may still exhibit parallax artifacts in the vicinity of
the object boundaries. Lee et al. divide an image into superpixels
and propose the warping residual vectors to distinguish feature
points from different depth planes [23].

Seam-Driven Methods. Seam-driven image stitching methods
are also influential. A seam-cutting loss for the homography is pro-
posed to measure the discontinuity between the warped target
image and the reference image in the work of Gao et al.[12]. The
homography with minimum seam-cutting loss is selected to
achieve the best stitching. Zhang et al. [47] introduced content-
nstrate the input and output of the large-baseline homography module, learning to
erved deformation module, learning to eliminate the artifacts and smooth the
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preserving warping (CPW) [31] to align overlapping regions for
small local adjustment while using the homography to maintain
the global image structure. Different from aligning pixels of the
overlapping area, Lin et al. [28] proposed to find a local area to
stitch images, which can protect the curves and lines during
stitching.

Although traditional image stitching methods have achieved
promising performance, they cannot handle low-texture scenarios.

2.2. Deep image stitching

Deep image stitching is still in development, since the labeled
data is hard to collect. In [37,50], synthetic datasets are proposed
to solve this problem. Besides, a content revision network is pro-
posed to generate the stitched image after image registration in
[37].

However, the performance of these methods in real-world data-
sets is not reliable and the resolution of the network input is
limited.

2.3. Deep Homography schemes

Homography estimation is an important part of image stitching,
and deep homography can also be regarded as a significant step in
deep image stitching. The deep homography solution was first pro-
posed in [8], where a synthetic dataset and a VGG-style solution
are put forward together. Then, Nguyen et al. [36] proposed an
unsupervised version for [8], in which a photometric loss is
adopted to measure the pixel error between warped images. Le
et al. [22] and Zhang et al. [48] proposed content-aware networks
to reject parallax regions and dynamic areas. And deep Lucas-
Kanade networks [3,51] are also presented to align a template
image with a source image. Besides, Koguciuk et al. [20] propose
to increase the robustness using perceptual loss. Ye et al. [45]
replace homography offset with motion basis to enhance the esti-
mation performance.

Nevertheless, when it comes to scenes of low overlap rates, The
performance of these solutions drops because of the limited recep-
tive fields of convolutional layers.

3. Our method

In this section, we discuss our multi-scale deep homography
module, edge-preserved deformation module, and size-free
schemes, respectively.

3.1. Multi-scale deep homography

Although deep homography methods in scenes of high overlap
rates [8,36,48,22,3] have outperformed traditional solutions, deep
homography estimation in scenes of low overlap rates is still chal-
lenging due to the limited receptive fields of neural networks. To
overcome this challenge, the proposed multi-scale deep homogra-
phy network integrates feature pyramid and feature correlation
into a network, increasing the utilization of feature maps and
expanding the receptive field, respectively. The architecture of
the proposed multi-scale deep homography network is shown in
Fig. 2.

Feature Pyramid. After the images are fed into our network,
they will be processed by 8 convolutional layers, where the num-
ber of filters per layer is set to 64, 64, 128, 128, 256, 256, 512,
and 512, respectively. A max-pooling layer is adopted every two
convolutional layers to represent multi-scale features as
F; F1=2; F1=4, and F1=8. As shown in Fig. 2, we select F1=2; F1=4, and
F1=8 to form a three-layer feature pyramid. The features of each
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layer in the pyramid are used to estimate the homography, and
we transmit the estimated homography of the upper layer to the
lower layer to enhance the prediction accuracy progressively.
Besides, among the features of the four scales, the features of three
scales will be used for subsequent homography regression, signif-
icantly improving the feature utilization.

Feature Correlation. To increase the receptive fields of our net-
work, the feature correlation layer [38,14,39,18] is used here to
strengthen feature matching explicitly. Formally, the correlation c

between the reference feature Fl
A 2 Wl � Hl � Cl and the target fea-

ture Fl
B 2 Wl � Hl � Cl can be calculated as,

c xlA; x
l
B

� � ¼ < Fl
A xlA
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where xlA; x
l
B are the 2-D spatial location in Fl

A and Fl
B, respectively.

Specifying the search radius on the axis of width (or height) as Rw

(or Rh), we obtain c 2 Wl � Hl � 2Rw þ 1ð Þ 2Rh þ 1ð Þ [43] by Eq. 1.
Specifically, we calculate the global correlation by setting Rw (or

Rh) equal to Wl (or Hl), and we calculate the local correlation when

Rw (or Rh) is less than Wl (or Hl). By applying global correlation and
local correlation to our network, we predict the homography pro-
gressively from global to local.

After extracting pyramid features and calculating feature corre-
lations, we adopt a simple regression network that comprises three
convolutional layers and two fully connected layers to predict
eight vertices’ offsets of the target image that can uniquely deter-
mine a homography. To be more specific, every layer of our three-
layer pyramid predicts the residual offsets Di; i ¼ 1;2;3. Every fea-
ture correlation in the pyramid is only calculated between the
warped target feature and the reference feature rather than
between the target feature and the reference feature. In this way,
each layer in the pyramid only learns to predict the residual
homography offsets instead of the complete offsets. And Di can
be calculated as follows:

Di ¼ H4pt F1=24�i

A ;W F1=24�i

B ;DLT
Xi�1

n¼0

Dn

 !* +( )
; ð2Þ

where H4pt is the operation of estimating the residual offsets from
the reference feature map and the warped target feature map. W
warps the target feature map using the homography and DLT

converts the offsets to the corresponding homography. We specify
D0 ¼ 0, which means all predicted offsets are 0. The final predicted
offsets can be calculated as follows:

Dw�h ¼ D1 þ D2 þ D3: ð3Þ
After that, image registration can be implemented by solving

the homography and warping the input images.
Objective Function: Our multi-scale deep homography is

trained in a supervised manner. Given the ground truth offsets
^Dw�h, we designed the following objective function:

LH ¼ w1
^Dw�h � D1

� �
þw2

^Dw�h � D1 � D2

� �
þw3

^Dw�h � D1 � D2 � D3

� �
;

ð4Þ

where the w1;w2, and w3 represent the weights of each layer in the
three-layer pyramid.

3.2. Edge-preserved deformation network

Stitching images with a global homography can easily produce
artifacts in scenes with parallax. To eliminate the ghosting effects,



Fig. 2. The architecture of our multi-scale deep homography network.
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we design an edge-preserved deformation network to learn the
deformation rules of image stitching from edge to content. The
learning process is quite different from traditional image fusion.
As illustrated in Fig. 1(d)(e), this learning method first eliminates
all the artifacts at the cost of edge discontinuity and then learns
to correct the discontinuity at the strategy of edge-preserved.

Edge Deformation Branch. Compared with the rich informa-
tion in an RGB image, such as color, texture, and content, the edge
only contains the objects’ contours in the image. Therefore, stitch-
ing the edges may be easier to achieve than stitching the RGB
image. Inspired by this observation, we design an efficient
approach to extract edges, and an edge deformation branch is used
to stitch them. The edge map E for a grayscale image G can be
obtained by calculating the difference of adjacent pixels as follows,

Ei;j ¼ jGi;j � Gi�1;jj þ jGi;j � Gi;j�1j; ð5Þ
where i and j are the horizontal and vertical coordinates. A convo-
lutional layer with fixed kernels can achieve the operation to
extract edges. Finally, we clip Ei;j between 0 and 1. As for the edge
deformation branch, we implement it using an encoder-decoder
architecture as shown in Fig. 3 (middle). In this branch, the max-
pooling or deconvolution is adopted every two convolutional layers
and the number of convolutional kernels is set to 64, 64, 128, 128,
256, 256, 512, 512, 256, 256, 128, 128, 64, 64, and 1, respectively.
Among these convolutional layers, the size of all kernels is set to
3� 3 and the activation function is set to ReLU, except for the last
convolutional layer. In the last layer, we set the kernel size to
1� 1 and the activation function as Sigmoid to generate the
stitched edge. Furthermore, to prevent the gradient vanishing prob-
lem and information imbalance in the training [40], skip connec-
tions are adopted to connect the low-level and high-level features
with the same resolution.

Image Deformation Branch. We also design an image defor-
mation branch to generate the stitched image in the guidance of
the stitched edges. The image deformation branch has a similar
architecture to the edge deformation branch as shown in Fig. 3
(top). To enable the image deformation branch of the edge-
preserved stitching, we use the edge features learned by the edge
deformation branch in the decoder stage to guide the learning.
To be specific, we concatenate each feature map obtained by
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deconvolution in the edge deformation branch with the corre-
sponding feature map in the image deformation branch from
low-level to high-level. Besides, a fusion block is designed to inte-
grate the last feature map in the edge deformation branch with the
corresponding feature map in the image deformation branch, as
illustrated in Fig. 4.

Objective Function. Similar to our deep homography, we train
our stitching network in a supervised manner. To make the

stitched edge close to the ground truth edge bE that is extracted

from the ground truth image bI;L1 loss is adopted as follows:

Ledge ¼ 1
W � H � 1

bE � E
��� ���

1
; ð6Þ

where W and H define the width and height of the stitched edge.
Inspired by [15], we define a content loss to encourage our

image deformation branch to generate perceptual naturally
stitched images. Specifically, we use the 9-th convolutional layer
in VGG-19 [42] as the representation of the image content. Let Uj

denotes the j-th layer of VGG-19 and we define our content loss
as follows:

Lcontent ¼ 1
Wj � Hj � Cj

Uj
bI� ��Uj Ið Þ

��� ���2
2
; ð7Þ

where Wj ,Hj and Cj denote the width, height, and channel number
of the feature map, respectively.

Considering the constraints on the edge and content, we finally
conclude our objective function as follows:

LS ¼ keLedge þ kcLcontent; ð8Þ
where the ke and kc represent the balance factors of edge loss and
content loss, respectively.

3.3. Size-free stitching

Size-free image stitching can be easily achieved by replacing the
fully connected layers with convolutional layers [33]. However, the
increase in input images’ resolution will significantly increase the
memory consumption because of feature correlation layers. Taking
the global correlation as an example, the required memory can be



Fig. 3. The architecture of edge-preserved deformation network. Top: Image deformation branch. Middle: Edge deformation branch. Bottom: Legend.

Fig. 4. The detail of the fusion block in the edge-preserved stitching branch.
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expanded by k4 times when the resolution of input images is
expanded by k times. To make it more clear, we show the change
of memory consumption as follows:
Wl � Hl � 2Wl þ 1
� �

2Hl þ 1
� �

)

kWl � kHl � 2kWl þ 1
� �

2kHl þ 1
� �

:
ð9Þ

Obviously, adopting a fully convolutional network (FCN) cannot
solve this problem. To reduce endless memory consumption, we
design an alternative to achieve size-free stitching.

When we resize the images, we can change the corresponding
offsets following the rule shown in Fig. 5. Noticing the relationship
between image resize and offsets resize, we implement our size-
free image stitching in three steps, as shown in Fig. 2: 1) We resize
the input images from W � H to w� h and save scaling factors for
width and height rW ;rH . 2) We predict the offsets from the images
of w� h. 3) We resize the offsets using rW and rH by the rule
shown in Fig. 5 to make them correspond to the images of
W � H. In short, we complete size-free homography estimation
using the relationship between image resize and offsets resize
without extra memory consumption. Since the edge-preserved
Fig. 5. The relationship between image resize and offsets resize. Dui;Dv ið Þ
represents the coordinate offsets of the i-th vertex in the target image, where
i = 1, 2, 3, and 4.
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deformation module can be regarded as an FCN, our deep image
stitching framework can process arbitrary size inputs.
4. Experiments

In this section, we carry out experiments to validate the effec-
tiveness of our method.

4.1. Dataset and implementation details

Dataset. Deep homography and deep image stitching are two
different tasks, but we adopt the same dataset to train them
together. We follow the strategy of [37] to generate a seemingly
infinite dataset for image stitching from Microsoft COCO [29]. We
call this dataset Stitched MS-COCO, and we demonstrate some
samples in Fig. 6. To be specific, in addition to the random pertur-
bation �q;q½ � [8] of the four vertices in an image patch, the random
translation �s; s½ � [37] is added to simulate the characteristics of
low overlap rates in image stitching. The format of Stitched MS-
COCO can be described as a quadruple IReference; ITarget;D; Label

� �
, of

which IReference and ITarget represent the reference image and target
image to be stitched, D represents the 8 coordinate offsets of the
four vertices to estimate a homography, and Label is the ground
truth of the stitched result. Specifically, when generating a quadru-
ple from a real image (W � H), we set the size of image patches
(PW � PH) to be input into our network to W=2:4� H=2:4, the max-
imum translation (sW � sH) to 0:5PW � 0:5PH , and the maximum
perturbance (qW � qH) to 0:2PW � 0:2PH . Moreover, D can be calcu-
lated by adding translation and perturbance together. We generate
50,000 quadruples from MS-COCO train2014 as the training set
and 5,000 quadruples from test2014 as the testing set.

Details. The training process is completed in two steps: deep
homography module and deep deformation module. Our deep
Fig. 6. Several samples of our Stitched MS-COCO dataset. Each sample is separated
by a dashed line. The IReference ; ITarget and Label are demonstrated in each instance.
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homography network is trained by an Adam optimizer [19] for up
to 100 epochs, with an exponentially decaying learning rate initial-
ized as 10�4, a decay step of 12;500, and a decay rate of 0:95.
According to the different influence of each pyramid layer on the
homography prediction, we set w1;w2, and w3 to 1, 0.25, and 0.1,
respectively. We adopt some data augmentation techniques to
enhance illumination robustness, such as artificially inserting ran-
dom brightness shifts into the training images. Subsequently, we
train our stitching module with the parameters of the homography
network being fixed. The training strategy is the same as that of the
homography module, except for the maximum training epoch set
as 25. The balance factors ke and kc are set to 1 and 2e�6. In addi-
tion, the batch size numbers of the two training steps are set to
4 and 1. The input size W � H of our framework is arbitrary, and
the scaling size w� h is set to 128� 128 which is consistent with
[8,36,48,22]. All the components of this framework are imple-
mented on TensorFlow, and the training process is performed on
one NVIDIA RTX 2080 Ti.

4.2. Comparison with homography estimations

Traditional homography estimations differ according to differ-
ent feature descriptors and different outlier rejections. In our
experiments, we choose SIFT [35] and ORB [41] as the feature
descriptors. RANSAC [10] and MAGSAC [2] are chosen as the outlier
rejection algorithms. Besides that, we compare our method with
deep homography algorithms, including DHN [8], UDHN [36],
and CA-UDHN [48]. Since the labeled homography can be obtained
in the synthetic datasets, we adopt the 4pt-Homography RMSE as
the evaluation metric, which is also used in [36].

Warped MS-COCO. Warped MS-COCO, which only includes
the random perturbance �q;q½ � of four vertices, is the most
widely acknowledged synthetic dataset for deep homography
estimation. We first conduct a comparative experiment on this
dataset with q ¼ 32, where each corner of the image patch can
be perturbed by a maximum of one-quarter of the total image
size. The results are shown in Table 1, where I3�3 refers to a
3� 3 identity matrix as a ‘no-warping’ homography for refer-
ence. The performance of traditional homography solutions
heavily relies on the quality of hand-craft feature points, which
indicates this method may fail in low-texture scenes. To avoid
this problem, we set the estimated homography to the identity
matrix when that happens. As shown in Table 1, the results
are divided into three parts to illustrate each method’s various
performance profiles as follows:

(1) The four traditional methods perform pretty well in the top
60% of all the testing sets, while it usually cannot capture
enough matched features to estimate a homography in the
worst 40% of all.
Table 1
Comparison experiment for homography estimation on Warped MS-COCO q ¼ 32ð Þ. The
vertexs and the ground truth. All the learning methods are trained on Warped MS-COCO.

Method Top 0�30% 30�60%

I3�3 15.0154 18.2515
SIFT[35]+RANSAC[10] 0.6687 1.1223
SIFT[35]+MAGSAC[2] 0.5697 0.8679
ORB[41]+RANSAC[10] 3.8995 10.2206
ORB[41]+MAGSAC[2] 3.1557 8.7443
DHN[8] 3.2998 4.8839
UDHN[36] 2.1894 3.5272
CA-UDHN[48] 15.0082 18.2498
Ours 0:2719 0:4140
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(2) UDHN and DHN achieve similar performance with offsets’
errors controlled to several pixels all the time.
(3) CA-UDHN achieves state-of-the-art performance in small-
baseline scenes, while its performance is close to I3�3 in case
of low overlap rates. This result is due to its limited perception
field, thus making it unable to perceive the long-range match-
ing information between the two inputs.
(4) Our multi-scale deep homography solution outperforms all
the compared deep solutions and traditional methods with a
large margin all the time.

Stitched MS-COCO. In most cases of image stitching, the over-
lap rate between images is much lower than that in Warped MS-
COCO. Here, the existing homography estimation solutions’ perfor-
mance drops sharply as the overlap rate decreases, while our
method is still robust and accurate. We verified this view on
Stitched MS-COCO dataset that is much more challenging due to
the larger displacement and the lower overlap rates. To be consis-
tent with Warped MS-COCO, we resize IReference and ITarget to
128� 128 in this experiment. Compared with the supervised solu-
tion DHN, the unsupervised solution UDHN requires extra informa-
tion around the image patch to prevent ambiguity during the
training process [36,48]. However, Stitched MS-COCO is only com-
posed of image patches and corresponding homography offsets,
making UDHN unable to be trained on this dataset. Therefore, we
test UDHN using the model trained on Warped MS-COCO.

In addition to these methods, we also compare ours with GC-
DHN [37] — the deep homography network of the first deep image
stitching method. The results are shown in Fig. 7 and we can con-
clude that:

(1) As the overlap rate decreases, the accuracy of all methods
continues to decrease, of which the accuracy of
SIFT + RANSAC, DHN, and UDHN decreases faster than other
methods.
(2) The lower the overlap rate is, the closer the performance of
the SIFT + RANSAC, DHN, and UDHN is to I3�3, which indicates
that these methods may fail to work when the overlap rate is
particularly low.
(3) Our solution outperforms the deep homography network
(GC-DHN) in other deep image stitching work [37].
(4) Our solution can maintain good accuracy even at low over-
lap rates. This benefits from the combination of feature pyramid
and feature correlation, which explicitly increase the network’s
receptive field on the feature maps of different scales.

4.3. Comparison with image stitching algorithms

Deep image stitching algorithms are still in development, we
choose VFISNet [37], a view-free image stitching network, as a rep-
number represents the 4pt-Homography RMSE between the estimated offsets of 4
F indicates that this method is worse than I3�3 in the current dataset.

60�100% Average

21.3548 18.5220
18.5990 7.9769
F F
F F
F F
7.7017 5.5358
6.5073 4.3179
F F
0:9761 0:5962



Fig. 7. Comparative experiment for homography estimation on Stitched MS-COCO
s ¼ 64;q ¼ 25ð Þ.

Table 2
Quantitative comparison between VFISNet and ours on Stitched MS-COCO.

Method PSNR SSIM

VFISNet [37] 24.8525 0.9241
Ours 27:4462 0:9463

Fig. 9. Failure cases of traditional feature-based methods. (i)(ii): The stitched
results of the Global Homography and ours. (iii): The ground truth.
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resentative of deep image stitching to compare. Since its input size
is 128� 128, we combine it with Bicubic interpolation to produce
the stitched results of arbitrary size. As for traditional methods, we
compare our method with four classical image stitching algo-
rithms: Global Homography, SPHP [5], APAP[46], and robust ELA
[25], in which the first two are classic methods with global trans-
formation models and the others are with local adaptive stitching
fields. Among these four methods, we implement Global Homogra-
phy using SIFT, RANSAC, and average fusion. The results of SPHP,
APAP, and robust ELA are obtained by running their open-source
codes with our testing instances. These methods are evaluated
on our synthetic images and real images, respectively.

Synthetic Images. First of all, we conduct a quantitative com-
parison between VFISNet and ours as shown in Table 2. Since the
two deep solutions adopt the same dataset, it is easy to calculate
the PSNR and SSIM. As for the traditional methods, the resolution
of the stitched images differs according to different ways, it’s hard
to compare them with ours quantitatively.

And a qualitative comparison is carried on in our synthetic
dataset in Fig. 8. There are apparent artifacts in the stitched result
of Global Homography because the mismatch of feature points
affects homography estimation accuracy. Compared with SPHP,
APAP, and robust ELA, our solution shows competitive perfor-
mance with these classic and convincing image stitching works.
In deep image stitching methods, our results are visually more
clear than that of VFISNet + Bicubic.
Fig. 8. The comparative experiments in our synthetic dataset. Col 1: Input images. Col 2
VFISNet[37]+Bicubic, and ours. Col 8: T.he ground truth.
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Besides that, our method is more robust. Traditional methods
heavily depend on the quality of feature detection and feature
matching. However, the feature points can be easily affected by
various environments. We test 1,000 pairs of images in our test
set with the Global Homography and our method. Experimental
results show that more than 30 pairs fail using the Global Homog-
raphy, while all work in our method. Fig. 9 shows some failure
cases of traditional methods in our synthetic dataset. As for other
feature-based methods, the number of failures can be much more
than that of the Global Homography, because they usually have
stricter requirements on the distribution or number of feature
points. For instance, APAP would require more feature points to
find a valid point subset when generating hypotheses for multi-
structure data [7]. The robustness of our method benefits from
the robust deep features that are adaptively learned in a neural
network.

Real Images. In addition to synthetic images, we also conduct a
cross-dataset experiment, in which our model is tested on real
images with varying degrees of parallax. Although our method is
only trained on a synthetic dataset without parallax, the proposed
edge-preserved deformation module enables our deep framework
the ability to handle misalignments caused by parallax.

As shown in Fig. 10, the first 5 examples come from classic
image stitching cases that are widely used in existing traditional
image stitching methods, and the last 5 are challenging cases with
obvious parallax or even moving objects taken by ourselves. The
arrows highlight the artifacts. Due to GPU memory limitation, we
limit the input images’ maximum size not to exceed 512� 512.
From the results shown in Fig. 10, we can observe:

(1) The deep image stitching methods (VFISNet and ours) can
eliminate almost all the artifacts, while the traditional methods
(Global Homography, SPHP, APAP, robust ELA) cannot do it in
various stitching scenes. This phenomenon can be attributed
to different stitching strategies. To eliminate the artifacts, the
traditional solutions try to align the reference image and target
image as much as possible. However, the stitching quality heav-
–7: Stitched results of the global homography, SPHP [5], APAP [46], robust ELA [25],
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ily relies on the number and distribution of the feature points,
failing to eliminate the ghosting effects in varying scenes. As
for the proposed deep image stitching, the network tends to
learn the overlapping areas from the reference image, neglect-
ing the target image and free from the artifacts. Although this
learning tendency may make the edges discontinuous, our net-
work would learn to revise it to look smooth and natural.
10. The comparative experiments in real images. Col 1: Input images. Col 2–7: Stitching
]+Bicubic, and ours. The first 5 examples come from classic image stitching cases (‘‘roof” [4
e challenging cases with obvious parallax or even moving person tak.en by ourselves.
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(2) Our method outperforms the existing deep image stitching
method. Although the deep solutions can eliminate the arti-
facts, they bring another problem: the stitched images’ non-
overlapping regions are blurred and discontinuous. This prob-
lem can be observed obviously in the results of VFISNet + Bicu-
bic, while our method alleviates this problem by learning image
stitching from edge to content progressively.
results of the global homography, SPHP [5], APAP [46], robust ELA [25], VFISNet
9], ‘‘yard” [12], ‘‘site” [46], ‘‘construction” [46] and ‘‘railtrack” [46]), and the last



Fig. 11. Robustness comparison in real low-texture scenes. Row 1: An indoor scene. Row 2: A low-light scene.
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(3) In a scene containing moving objects, the learning methods
perform better than the traditional methods. Row 7 of Fig. 10
exhibits a pair of images that contains a moving person. We
can see that the Global Homography, SPHP, APAP, and robust
ELA cannot handle this moving person while the learning meth-
ods deal with it successfully.

In addition, we compare the robustness in real challenging
scenes. As shown in Fig. 11, traditional solutions fail due to the
poor quality of hand-craft feature points in low-texture scenes,
while the proposed deep solution succeeds because of the learn-
able robust deep features.
4.4. Ablation studies

We conduct ablation experiments to validate the necessity of
each part in our proposed framework.

Feature Pyramid. The feature pyramid serves as a multi-scale
feature extractor in our method. To reduce parameters, we set
the kernel size of each convolutional layer to 3� 3. However, the
receptive field of the 3� 3 kernel is significantly limited. To miti-
gate this contradiction, the feature pyramid is adopted to extract
multi-scale features on different pyramid levels with a fixed kernel
size. We evaluate the significance of the feature pyramid with our
synthetic dataset on the homography estimation task. As we can
see in Fig. 12, our complete pyramid model has significantly smal-
ler errors than one-layer or two-layer models.
Fig. 12. Ablation experiments on feature pyramid and feature correlation for
homography estimation. Feature pyramid: The three-layer pyramid model is better
than one-layer and two-layer. Feature correlation: The model with feature
correlation is better than that without.
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Feature Correlation. The feature correlation layer plays the
role of feature matching in our method. Different from other
deep homography estimations [8,36,48,22] that match features
by learning convolutional filters, our feature correlation layers
match features by making full use of the features extracted by
the convolutional layers. Besides that, our global-to-local strat-
egy ensures our capability to match features all over feature
maps. To validate the effects of feature correlation, we experi-
ment with removing feature correlation layers, where both the
global correlation and the local correlation are ablated. The
results are shown in Fig. 12, where the RMSE increases with a
large margin in the absence of feature correlation, especially
with the low overlap rate.

Edge Deformation Branch. To validate the effectiveness of the
edge deformation branch, we carry out ablation experiments on
real images. We retrain the deformation module without the edge
deformation branch. The results are illustrated in Fig. 13, and we
can observe:

(1) With or without the edge deformation branch, the network
can learn to eliminate artifacts in the overlapping area.
(2) After ablating this branch, the edges of the stitched images
are not discontinuous as shown in Fig. 13 (a). With this branch
(Fig. 13 (b)), the network further learns to smooth the discon-
tinuous edges, contributing to visually pleasing and edge-
continuity stitched results.
5. Conclusion

This paper presents a novel deep image stitching algorithm that
can stitch images from arbitrary shooting positions into a percep-
tually natural image. First, a multi-scale deep homography net-
work is proposed to implement homography estimation and
image registration, which outperforms existing deep solutions
and traditional solutions with a large margin. Then we present
an edge-preserved deformation module to learn the deformation
rules of image stitching from the warped images. Furthermore,
some schemes are adopted to enable our network the capability
of free-size stitching when the fully connected layers are inevita-
ble. Experiments show that our superiority to the existing learning
method and shows competitive performance with state-of-the-art
traditional methods. Furthermore, as a learning method that is
only trained in a synthetic dataset, our method exhibits excellent
generalization in other real-world datasets.



Fig. 13. Ablation experiment on real images to validate the effects of edge deformation branch.
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