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Detection of Double JPEG Compression With
the Same Quantization Matrix

via Convergence Analysis
Yakun Niu , Xiaolong Li , Yao Zhao , Senior Member, IEEE, and Rongrong Ni

Abstract— Detecting double JPEG compression with the same
quantization matrix is a challenging task in image forensics.
To address this problem, in this paper, a novel method is proposed
by leveraging the component convergence during repeated JPEG
compressions. Firstly, an in-depth analysis of the pipeline in
successive JPEG compressions is conducted, and it reveals that
the rounding/truncation errors as well as JPEG coefficients tend
to converge after multiple recompressions. Based on this fact,
the backward quantization error (BQE) is defined, and we
find that the ratio of non-zero BQE for single compression is
larger than that for double compression. Moreover, to exploit
the convergence property of JPEG coefficients, a multi-threshold
strategy is designed for capturing the statistics of the number of
different JPEG coefficients between two sequential compressions.
Finally, the statistical features of the dual components are con-
catenated into a 15-D vector to detect double JPEG compression.
Experimental results demonstrate the efficiency of the proposed
method, which outperforms some state-of-the-art schemes.

Index Terms— Image forensics, double JPEG compression,
rounding/truncation errors, JPEG coefficients.

I. INTRODUCTION

IDENTIFYING the originality and authenticity of digital
images is challenging nowadays since forgery becomes a

rather convenient and simple task, even for non-professional
users. If maliciously forged images are abused, it can be
a serious problem for our community security. Fortunately,
researchers have developed a variety of approaches to inspect
the image integrity [1]–[7]. Many of them operate by directly
identifying traces of manipulation since it usually inevitably
leaves unique fingerprints on images. Detecting manipula-
tion, such as median filtering [8]–[11], resampling [12]–[15],
contrast enhancement [16]–[18], and JPEG compression
[19]–[22], involved in image tampering not only reveals the
forgery but also recovers the image processing history.
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Double JPEG compression detection plays a major role in
image forensics since double compression is inevitable when
a JPEG image forgery is created [23]–[28]. This detection
task has two cases: double JPEG compression with different
quantization matrices and that with the same quantization
matrix. For the first case, some effective methods have been
proposed [29]–[37]. In [29], Lukas and Fridrich proposed to
explore the local peaks and missing values in the JPEG coeffi-
cients histogram. In [30], Popescu and Farid demonstrated that
double JPEG compression can be detected by measuring the
periodic artifacts of JPEG coefficients histograms via Fourier
transform. In [31], Fu et al. observed that the first digits
distribution of AC coefficients for singly compressed image
follows a generalized Benford’s law, which can be utilized
for double JPEG compression detection. In [32], Li et al.
as an extension of [31], Fu et al. proposed to use the first
digits of JPEG coefficients from some specifically selected AC
channels. In [33], the transition probability matrices derived
from the difference JPEG 2-D arrays are utilized. Recently,
unlike the aforementioned hand-craft features based methods,
several CNN based methods [34]–[37] have been proposed.
In [34], the concatenated DCT histograms are taken as the
input of CNN. In [35], CNN is trained directly with the images
in both the pixel and noise domains. In [36], considering
both the spatial and frequency domains, a multi-domain based
approach is proposed with CNN. In [37], the quantization
table is considered to facilitate the detection with mixed
quality factors (QFs). At present, for the case of double JPEG
compression detection with different quantization matrices,
high accuracy performance can be achieved, even for small
image patches.

However, the aforementioned methods [29]–[37] would fail
to detect double JPEG compression with the same quantization
matrix. To the best of our knowledge, only a few works have
focused on this task. In [38], Huang et al. observed that
the number of different JPEG coefficients (NDC) between
two sequential compressed images decreases in successive
JPEG compressions. Based on this observation, a random
perturbation strategy is designed to obtain an image dependent
threshold, then by comparing the threshold with NDC, double
JPEG compression can be identified. In [39], Yang et al.
found that during JPEG compression, for the image block in
which rounding or truncation error exists, the maximal and
average errors of single compression are larger than those of
double compression. Then, the variance and mean of rounding

1051-8215 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Beijing Jiaotong University. Downloaded on November 10,2022 at 07:54:18 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-2793-2823
https://orcid.org/0000-0002-6111-9000
https://orcid.org/0000-0002-8581-9554
https://orcid.org/0000-0002-5096-8752


3280 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 32, NO. 5, MAY 2022

and truncation error blocks are used to extract features for
detection. In our previous work [40], for improving [38],
a novel random perturbation strategy based detection method
is proposed. Unlike Huang et al.’s work that indiscriminately
selects JPEG coefficients for modification, only coefficients
valued ±1 are modified with a novel strategy. Recently,
several CNN based methods have been proposed as well for
this detection task [41]–[43]. Although considerable progress
has been made, most of existing methods do not make full
use of the statistical difference between single and double
JPEG compressions, that degrades the detection performance,
especially for the case of low QFs. Furthermore, there is a lack
of theoretical analysis of the rounding/truncation errors and
JPEG coefficients in successive JPEG compressions. Filling
in these gaps will promote the detection accuracy.

In this paper, a novel method is proposed to detect dou-
ble JPEG compression with the same quantization matrix.
Firstly, an in-depth analysis of the pipeline in successive
JPEG compressions is conducted and it derives that round-
ing/truncation errors as well as JPEG coefficients tend to
converge after multiple recompressions. Based on this fact,
the backward quantization error (BQE) is defined, and we
find that the ratio of non-zero BQE for single compression
is larger than that for double compression. Then, a set
of such ratios (named error-based features) is respectively
extracted from rounding and truncation error blocks. More-
over, a multi-threshold strategy (MTS) is designed to exploit
the convergence property of JPEG coefficients. Specifically,
a novel perturbation strategy is proposed, in which multiple
thresholds are derived with different modification ratios on
JPEG coefficients. Then, the differences between the multiple
thresholds and NDC (called perturbation-based features) are
utilized as features. Finally, the error- and perturbation-based
features are concatenated into a 15-D vector for detection.
Extensive experimental results demonstrate that the proposed
method provides superior performance to some state-of-the-art
works [38]–[40].

The rest of this paper is organized as follows. In Section II,
the problem statement and the motivation for double JPEG
compression detection are reported. Section III mainly intro-
duces the proposed method leveraging the convergent rates
of rounding/truncation errors and JPEG coefficients to detect
double JPEG compression. Experimental results are presented
in Section IV and the conclusion is drawn in Section V.

II. PRELIMINARY

A. Problem Statement

The JPEG compression procedure, including compression
and de-compression phases, is shown in Fig. 1. In the com-
pression phase, a raw image is first split into non-overlapping
8×8 blocks, and each image block X1 is then performed with
DCT to obtain its corresponding transformed block

Y 1 = DCT(X1). (1)

Next, the transformed block is component-wisely divided by
the quantization steps and then rounded to yield the JPEG
coefficients block [Y 1/Q]. Here, [·] denotes the rounding

Fig. 1. JPEG compression procedure.

operation and Q is the 8 × 8 quantization matrix consisting
of 64 quantization steps qi ∈ N with i ∈ {0, . . . , 63}. Finally,
lossless entropy encoding is performed on JPEG coefficients
to derive the compressed bitstream.

In JPEG de-compression phase, after entropy decoding,
the JPEG coefficients are component-wisely multiplied by Q
to obtain the de-quantized JPEG coefficients

Z1 =
[

Y 1

Q

]
Q. (2)

Then, the inverse DCT (IDCT) is performed on Z1 to bring
the coefficients back to the spatial domain to derive the
de-transformed block

U1 = IDCT(Z1). (3)

Finally, each element of U1 is rounded to its nearest integer
and then truncated in the range of [0, 255] to obtain the
de-compressed image block

X2 = RT(U1). (4)

Here, RT(·) means the rounding and truncation operations.
Notice that, in JPEG compression procedure, three types of

information loss, namely quantization, rounding and trunca-
tion errors, are generated. Quantization and rounding errors
always exist, while truncation error does not. The quanti-
zation error occurs within quantization and de-quantization
operations (Q&D), while the rounding error is generated in
the final step of JPEG compression, in which U1 should
be rounded to integers. Then, if X2 �= [U1], the truncation
error occurs and the block is called truncation error block.
Otherwise, i.e., X2 = [U1], the block is simply rounded
without truncation operation, and it is called rounding error
block.

Repeating the above compression and de-compression
phases on each image block X2, the doubly compressed image
with the same quantization matrix Q is thus obtained. For clar-
ity, considering repeated compressions and de-compressions
for k times, in the same way, we respectively define Xk , Y k , Zk

and Uk as the image block, transformed block, de-quantized
JPEG coefficients block, and de-transformed block. Specifi-
cally, with a given raw image block X1, these blocks can be
sequentially computed as follows for each k ≥ 1⎧⎪⎪⎪⎨⎪⎪⎪⎩

Y k = DCT(Xk)

Zk = [Y k/Q]Q

Uk = IDCT(Zk)

Xk+1 = RT(Uk).

(5)
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Fig. 2. The chain of repeated manipulations, where F denotes the specific
manipulation and Ĩ is the convergent state.

Fig. 3. The chain of Zk in successive JPEG compressions.

Moreover, we define the quantization error block as

Ek = Y k − Zk . (6)

The above defined blocks will be analyzed in the following
context for a theoretical basis of the proposed method.

Clearly, by these notations, Z1 and Z2 respectively denote
the de-quantized JPEG coefficients in single and double JPEG
compressions. Therefore, for a given JPEG image to be
detected, after entropy decoding, the double JPEG compres-
sion detection task can be viewed as identifying Z2 from Z1.

B. Motivation

As known, in some forensic scenarios, if the same manipu-
lation is repeatedly performed on an image, the resulting image
sequence tends to be convergent. For a better illustration,
Fig. 2 shows the chain of the repeated manipulations, where
I 1 is a given image, F denotes a specific manipulation, and
I k+1 is the derived image after applying the manipulation
F for k times. With these notations, the sequence {I k}k≥1
converges to an image denoted Ĩ . However, the original image
I 1 and its manipulated version I 2 = F(I 1) have different
convergent rates. Roughly speaking, there exists a function
d such that d(I 1, Ĩ ) and d(I 2, Ĩ ) are rather different, where
d(I, Î ) measures a specifically defined difference between two
images I and Î . Then, based on the measurement function d ,
the image manipulation F can be effectively detected. This
convergent tendency has been widely used for audio, image
and video forensics [9], [44]–[48].

Inspired by the aforementioned convergent phenomenon,
we propose to investigate the property for the sequence
{Zk}k≥1 in successive JPEG compressions, and then design
statistical features for our detection task. As shown in the
upper figure of Fig. 3, the successive JPEG compressions are
summarized to the manipulation chain between Zk and Zk+1.
Since IDCT and DCT are lossless, the chain can be simplified
as Zk → Y k+1 → Zk+1 as shown in the lower figure of Fig. 3.
Then, we will study the relationship between Zk and Zk+1 in
this chain. The key issue is to impose the following quantity
called BQE, which is the difference between DCT coefficients

Fig. 4. State transition of the three types of BQEs.

TABLE I

THE AVERAGE NUMBERS OF THREE TYPES OF BQES

ON UCID WITH QF=90

Y k+1 and the de-quantized JPEG coefficients Zk

W k = Y k+1 − Zk . (7)

Then, the relationship between Zk+1 and Zk is given by

Zk+1 =
[

Y k+1

Q

]
Q =

[
W k + Zk

Q

]
Q = Zk +

[
W k

Q

]
Q. (8)

Notice that, for a given k, if [W k/Q] = 0, we have
Zk+1 = Zk . Then, according to (5), we can derive that Y k+1 =
Y k+2, and thus W k+1 = W k . It implicates that Y k , Zk and W k

remain unchanged in the following recompressions, i.e., it is
easy to prove that, by induction, Y k+n = Y k , Zk+n = Zk and
W k+n = W k hold for any n ≥ 1. In such scenario, W k is
called the stable BQE (SBQE). If [W k/Q] �= 0, considering
the rounding and truncation errors, BQE can be classified
into two categories, i.e., rounding error BQE (RBQE) and
truncation error BQE (TBQE). As a result, given a singly
compressed image, there are three types of BQEs which are
listed as follows⎧⎪⎨⎪⎩

SBQE, [W 1/Q] = 0

RBQE, [W 1/Q] �= 0, X2 = [U1]
TBQE. [W 1/Q] �= 0, X2 �= [U1]

. (9)

Since SBQE remains unchanged in the following recom-
pressions, it is neither changed to RBQE nor TBQE. Further-
more, we find that RBQE and TBQE cannot be changed to
each other, only to SBQE. In summary, after recompression,
the state transition of the three types of BQEs is shown
in Fig. 4. To illustrate this, we test BQE on 1,338 gray-scale
images compressed with QF = 90 taken from UCID data-
base [49]. The average numbers of the three types of BQEs
are listed in Table I. We can see that the number of SBQE
increases while that of RBQE and TBQE decreases with
recompression. Moreover, the change speed of RBQE is faster
than that of TBQE. For a better demonstration, the state tran-
sitions of the three types of BQEs in successive compressed
images are shown Fig. 5. As can be seen, RBQE and TBQE
are changed to SBQE after recompression. Based on the above
analysis, two facts can be observed: i) both RBQE and TBQE
converge to SBQE after repeated recompressions, ii) SBQE is
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Fig. 5. Variation of BQE: SBQE, RBQE and TBQE blocks are marked in gray, blue and red, respectively.

Fig. 6. The flowchart of the proposed method for double JPEG compression detection.

useless for the detection. As a consequence, the convergent
rate of RBQE/TBQE can be employed as a clue for the
detection.

Regarding (7), from the perspective of the difference
between Y k+1 and Zk , BQE only reflects partial information
for the sequence {Zk}k≥1. However, it cannot completely
capture the variation tendency of such sequence. Then, NDC
is considered as the other investigation of such tendency from
the view of JPEG coefficients. According to (8), the monotone
decreasing of NDC in successive recompressions, observed
in [38] and our previous work [40], can be theoretically
explained. As a result, the convergent rate of NDC for double
compression is faster than that for single compression. In
summary, the convergent rates of BQE and NDC for single
and double compressions are different, which are considered
as the clues for detecting double JPEG compression with the
same quantization matrix.

III. PROPOSED METHOD

In this section, by leveraging the convergence property
of rounding/truncation errors and JPEG coefficients, a novel
method for double JPEG compression detection is proposed.
The flowchart of the proposed method is shown in Fig. 6 for
clarity. Firstly, BQE is analyzed and a set of ratios for non-zero
RBQE/TBQE (error-based features) is respectively extracted to

characterize the convergent tendency of rounding/truncation
errors. Then, considering NDC, a new perturbation strat-
egy is presented, in which multiple thresholds are exploited
with different modification ratios on JPEG coefficients, and
the differences between the multiple thresholds and NDC
(perturbation-based features) are utilized as features for mea-
suring the convergent property of JPEG coefficients. Finally,
the extracted features are concatenated into a 15-D vector and
then fed into SVM for the detection.

A. Analysis on BQE and the Error-Based Features

For SBQE, we know that W k+1 = W k holds for each
k ≥ 1, thus it cannot provide discriminative information for
distinguishing double compression from single compression.
As a result, SBQE is excluded for the detection. We then study
the relationship between W k+1 and W k for RBQE and TBQE,
respectively.

1) RBQE: Clearly, we can prove that

W k+1 = DCT
({

IDCT
(

W k −
[W k

Q

]
Q

)})
, (10)

where {x} = x − [x] means the decimal part of x . The proof
of (10) can be found in Appendix.

First, consider a simple case that Q = 1 which is the matrix
with each element qi equals 1, i.e., QF = 100, the above
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Fig. 7. RBQE: (a) the average distribution and (b) the corresponding average
R QR for QF=100 on UCID.

equation (10) can be then rewritten as

W k+1 = DCT({IDCT({W k})}). (11)

As DCT/IDCT is an orthogonal transform and

{x}2 ≤ x2 + min(0, 1 − 2|x |) ≤ x2 (12)

holds for each x ∈ R, we have

‖W k+1‖2 = ‖{IDCT({W k})}‖2

≤ ‖IDCT({W k)}‖2

= ‖{W k}‖2

≤ ‖W k‖2 +
63∑

i=0

min(0, 1 − 2|W k
i |) (13)

and thus

‖W k+1‖ ≤ ‖W k‖ (14)

where ‖·‖ denotes the usual l2-norm, and (W k
0 , . . . , W k

63) is the
vector form of W k . Based on (13), for any ε > 0, we know that
there is only finite (k, i) satisfying |W k

i | ≥ 1
2 + ε. Otherwise,

‖W k‖ → −∞ when k → +∞, which is a contradiction. This
indicates that, for each i

lim
k→∞|W k

i | ≤ 1

2
+ ε. (15)

As ε is arbitrary, we then have

lim
k→∞|W k

i | ≤ 1

2
(16)

which says that

lim
k→∞‖W k‖∞ ≤ 1

2
. (17)

Based on (14)–(17), we know that after multiple recom-
pressions, the l2-norm of W k decreases and thus converges.
Moreover, the maximum of |W k

i | approximates to 1/2. Fig. 7(a)
shows the average distribution of RBQE on UCID database
with QF = 100 for k times (1 ≤ k ≤ 6) compressions. It is
clear that i) the distribution tends to become convergent, ii) the
maximum and minimum of RBQE respectively approximate
to 1

2 and − 1
2 for increasing k, iii) the distribution with the

(k + 1)-th compression is closer to the convergent state than
that with the k-th compression. Thus, the distance between
the distribution for single compression and the convergent
state is larger than that for double compression. To measure
such distance, the ratio of non-zero quantized RBQE (RQ R),
i.e., the ratio of RBQE outside [− qi

2 , qi
2 ], is considered as a

simple metric. Fig. 7(b) shows the average RQ R on UCID
with QF = 100. Clearly, RQ R decreases and tends to con-
verge with k increasing. Importantly, for single compression
(k = 1), RQ R is larger than that for double compression
(k = 2). Consequently, RQ R is utilized as one feature for
detection.

When Q �= 1, i.e., QF �= 100, it is hard to provide
theoretical analysis of the relationship between W k+1 and W k .
We experimentally analyze RBQE in successive recompres-
sions. Fig. 8 shows the average RQ R with QF = 95, 90, 85
for k times compressions. It is observed that RQ R tends to
be stable after multiple recompressions. Obviously, RQ R for
single compression is larger than that for double compres-
sion, especially for QF ≤ 90. For example, RQ R of single
compression is 0.014 while it almost changes to zero after
double compression when QF = 85. Moreover, the average
distributions of RBQE are also reported in Fig. 9(a)–(c). It can
be seen that the distribution gradually shrinks toward the
center. To measure the variation tendency of such distribution,
the ratio of non-zero RBQE (RR), i.e., the area under the
distribution, is considered as the other metric. The corre-
sponding average RR is shown in Fig. 9(d), where RR for
single compression is larger than that for double compression.
Especially for QF ≤ 90, RR almost tends to zero after double
compression. Thus, RR also can be utilized for detection.

In summary, two features, i.e., RQ R and RR, are proposed
from RBQE for double JPEG compression detection.

2) TBQE: Since there is a lack of theoretical model for
truncation error, in the following context, we experimentally
discuss the convergence of TBQE.

Firstly, the ratios of non-zero quantized TBQE (RQT ) with
QF = 100, 95, 90 are shown in Fig. 10. As can be seen
that RQT decreases with k increasing. That is, for single
compression, RQT is larger than that for double compression.
Then, the distributions of TBQE with QF = 100, 95, 90 are
also shown in Fig. 11(a)–(c). It is observed that the distribution
of TBQE for the (k + 1)-th compression is always lower than
that for the k-th compression. As a result, the ratio of non-zero
TBQE (RT ) for the k-th compression is larger than that for
the (k + 1)-th compression (see Fig. 11(d)).

An interesting observation is that the average ratio of the
number of TBQE to the number of truncation error blocks,
called RT T , tends to converge after multiple recompressions.
Fig. 12 shows the variation tendency of the average RT T
with different QFs for k times compressions. It can be seen
that RT T of single compression is larger than that of double
compression, then it tends to be stable when k = 6. Based on
the above analysis, three features, i.e., RQT , RT and RT T ,
are proposed from TBQE for our detection task.

In summary, such ratios, i.e., RR, RT , RQ R, RQT and
RT T , are computed as the error-based features to measure the
convergent rates of RBQE and TBQE for double compression
detection.

B. Analysis on JPEG Coefficients and the
Perturbation-Based Features

The error-based features only partially exploit {Zk}k≥1.
However, they cannot completely capture the variation
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Fig. 8. The average R QR for (a) QF=95, (b) QF=90 and (c) QF=85.

Fig. 9. The average distribution of RBQE for (a) QF=95, (b) QF=90, (c) QF=85 and (d) the corresponding average R R.

Fig. 10. The average R QT for (a) QF=100, (b) QF=95 and (c) QF=90.

Fig. 11. The average distribution of TBQE for (a) QF=100, (b) QF=95, (c) QF=90, and (d) the corresponding average RT .

tendency of such sequence. In this subsection, from the view
of JPEG coefficients, NDC is exploited to investigate {Zk}k≥1.
First, an analysis of the perturbation strategy on JPEG coef-
ficients is provided and then MTS is proposed by exploring
multiple thresholds. Finally, the differences between the multi-
ple thresholds and NDC are utilized as the perturbation-based
features for the detection.

In [38] and our previous work [40], for a given JPEG image
to be detected, the single threshold based random perturbation
strategy is adopted to find a proper ratio for JPEG coefficients
modification and then obtain an image dependent threshold D̂.
By comparing D̂ with the NDC denoted as D, double JPEG
compression can be distinguished as follows{

double compression, if D̂ ≥ D

single compression, if D̂ < D
. (18)

Fig. 12. Variation tendency of the average RT T for the k-th compression.

Recall here that, NDC is the number of different JPEG
coefficients between the to be detected JPEG image and
its recompressed version. Specifically, assume that B is a
JPEG coefficients block in the JPEG image. It is modified
by the perturbation strategy, then the modified version of B
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is given by

B∗
u,v = Bu,v + αu,v (19)

where 0 ≤ u, v ≤ 7 is the selected frequency position, and
αu,v ∈ {1,−1} is the perturbation quantity, which is randomly
determined.

We now analyze the perturbation strategy. For clarity,
we consider a simple case that only one non-zero element
is modified. The de-quantization and IDCT operations are
applied on B∗ in turn, then we have, by a simple deduction

C∗
x,y = Cx,y + αcûcv̂ Qû,v̂ cos

ûπ(2x + 1)

16
cos

v̂π(2y + 1)

16
(20)

where (û, v̂) refers to the specific position of the modified
JPEG coefficient in the 8 × 8 block, ct = √

1/8 if t = 0,
ct = 1/2 if t �= 0, C and C∗ are the results by performing
IDCT on B and B∗, respectively. Then the absolute difference
between Cx,y and C∗

x,y is

�x,y = cûcv̂ Qû,v̂

∣∣∣ cos
ûπ(2x + 1)

16
cos

v̂π(2y + 1)

16

∣∣∣. (21)

According to (21), �x,y only depends on the quantization
step Qû,v̂ . If Qû,v̂ is a large quantization step, the difference
�x,y is large as well and thus the block C is severely
perturbed. That is, the range of rounding/truncation errors
is going to be wide thus D̂ should be large based on
(20). Since the quantization steps are different with differ-
ent frequency positions, the threshold D̂ is quite different
for each modification. As a result, singly JPEG compressed
images may be identified as doubly JPEG compressed ones
even using the same modification ratio r . As a consequence,
the main problem of single threshold based methods [38],
[40] is that, on one hand, the modification ratio r is chosen
from the entire database, which is not the optimal one for
each individual image. On the other hand, the perturbation
strategy has randomness and uncertainty, that leads to unstable
detection results. To address these problems, MTS is proposed
to extract the perturbation-based features. More specifically,
given a to be detected JPEG image, the JPEG coefficients
are randomly modified with different modification ratios rn

to obtain the multiple thresholds D̂n . Here, 1 ≤ n ≤ N
and r1 < r2 < . . . < rN . Then the differences between
D̂n and D are explored for the perturbation-based features
extraction. The benefits of MTS are summarised as follow.
The set of rn contains the optimal modification ratio for each
individual image to the maximum extent, which deduces the
misclassification probability. Moreover, the single threshold
strategy can be considered as an individual classifier, which
has different detection results with different thresholds. Due
to the diversity of multiple thresholds, MTS is regarded
as diverse individual learners that is able to achieve more
stable and higher detection accuracies than those of the single
threshold based strategy. The details of MTS are described
in Section III-C.2.

C. Features Extraction

In this subsection, we introduce the features extraction
procedure.

1) Error-Based Features Extraction: The error-based fea-
tures, i.e., RR, RT, RQ R, RQT, RT T , are extracted from
RBQE and TBQE, respectively. More specifically, RR and
RT are computed as follows

RR =
∫ −θ

−∞
fr (x)dx +

∫ ∞

θ
fr (x)dx

RT =
∫ −θ

−∞
ft (x)dx +

∫ ∞

θ
ft (x)dx (22)

where fr and ft are the distributions of RBQE and TBQE,
respectively, and θ is set to 0.01. The ratios of non-zero quan-
tized RBQE and TBQE, i.e., RQ R and RQT , are calculated
by

RQ R =

Lr∑
l=1

7∑
u,v=0

δ(Sr,l (u, v))

64Lr

RQT =

Lt∑
l=1

7∑
u,v=0

δ(St,l(u, v))

64Lt
(23)

where Lr and Lt are the numbers of RBQE and TBQE blocks,
Sr,l and St,l denote the l-th quantized RBQE and TBQE, and
δ(·) is the indicator function defined as

δ(x) =
{

1, if x �= 0

0, if x = 0.
(24)

Moreover, RT T is computed as the ratio of the number
of TBQE blocks to the number of truncation error blocks.
Eventually, the set of error-based features, E_fea, is

E_fea = {RR, RT, RQ R, RQT, RT T }. (25)

2) Perturbation-Based Features Extraction:
Perturbation-based features are extracted based on MTS. The
features extraction process is summarised as follows: Step 1)

1) Decompress the to be detected JPEG image J , and then
compress it again with the same quantization matrix Q
to obtain a new JPEG image K . The NDC between J
and K is denoted as D.

2) Decode K to derive its JPEG coefficients and then
randomly modify it with the modification ratio r1 by
the modification strategy. Then, encode the modified
coefficients to generate a JPEG image K ∗.

3) Decompress K ∗ into the spatial domain, and then recom-
press it with Q to obtain K̂ ∗. The NDC between K ∗ and
K̂ ∗ is denoted as D̂∗

1 .
4) Repeat the above two steps for (N − 1) times with dif-

ferent ratios r2, . . . , rN to derive the (N − 1) thresholds
D̂∗

2 , . . . , D̂∗
N .

5) After the above procedures, the set of perturbation-based
features is defined as P_fea = {d1, . . . , dN }, where dn =
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TABLE II

DETECTION ACCURACY RATES (%) OF E_FEA, P_FEA AND EP_FEA ON THREE DATABASES

TABLE III

TPR AND TNR OF THE PROPOSED METHOD ON THREE DATABASES

sign(D̂∗
n − D), with

sign(x) =
{

1, if x ≥ 0

0, if x < 0.
(26)

Finally, the features extracted from RBQE/TBQE as well as
NDC are concatenated into a 15-D feature vector EP_fea =
[E_fea, P_fea], then it is fed into SVM for double JPEG
compression detection.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

1) Dataset: For the experiments, we build singly and
doubly JPEG compressed images with raw images taken
from UCID [49], BOSSbase [50] and SYSU [38] databases,
respectively. UCID database consists of 1,338 images sized of
384×512 or 512×384. We randomly select 1,000 images from
BOSSbase database with the size of 512×512. SYSU database
contains 1,128 images sized of 512×512. All these images are
first singly compressed to generate the negative samples.1 The
positive samples are obtained by recompressing those singly
compressed images with the same quantization matrix.

2) Evaluation Criterion: We evaluate the proposed method
in terms of true positive rate (TPR), true negative rate (TNR),
and detection accuracy rate,2 computed as (TPR + TNR)

/
2.

TPR (TNR) represents the proportion of correctly predicted
doubly (singly) compressed images.

3) Parameter Set: For methods in [38] and [40], the proper
ratios for JPEG coefficients modification are determined
through exhaustive search. To extract the proposed P_fea,
the number of different modification ratios is set to N = 10.
Specifically, the modified ratios rn are selected from the range
of [0.030, 0.048] with the step of 0.002. The soft-margin SVM
with the Gaussian kernel is adopted and 20-fold grid searching
is used to select parameters c and γ for the classifier. Half

1The color images should be firstly converted into grayscale.
2The numbers of singly and doubly compressed images are equal in our

experiments.

of the singly and doubly compressed images are randomly
selected for training, and the remaining ones are used for
testing. Each testing procedure is repeated over 20 times and
the average detection accuracy rate is reported.

B. Evaluation of Different Subsets of Features

In this subsection, we first evaluate the performance of
the proposed feature sets, i.e., E_fea, P_fea as well as the
concatenated features EP_fea, for ablation study. The detection
accuracy rates of the aforementioned three feature sets are
listed in Table II. It is observed that E_fea outperforms
P_fea with high QFs. For example, the detection accuracy
rate of E_fea is 99.36%, which is higher than that (96.06%)
of P_fea when QF = 90 on SYSU database. In addition,
P_fea is more efficient than E_fea with low QFs. Compared
with the two individual feature sets, the concatenated EP_fea
can improve the detection performance to a higher level.
It indicates that each individual subset of features can provide
complementary discriminative information for double JPEG
compression detection.

We also evaluate the proposed method with the criterions
of TPR and TNR, as shown in Table III. We can observe
that the TPRs and TNRs are considerably balanced in most
cases while there exists a little unbalanced results for low
QFs (See QF = 70 on SYSU). This can be explained that,
in such scenario, the numbers of both RBQE and TBQE
are quite small thus there is less useful information for
feature extraction. Consequently, the features extracted from
singly and doubly compressed images are indistinguishable,
which results in biased detection results. Furthermore, TPRs
and TNRs of methods [38], [40] based on single threshold
are usually biased towards doubly JPEG compressed images
with low QFs (see Tables 2 and 3 in [40]). The results
in Tables II and III indicate the superiority of the proposed
method both in accuracy and unbiasedness. Notice that, both
TPR and TNR become worse with QF decreasing. The reason
is that less discriminative information can be extracted from
BQE with low QFs. We observe that if there is no RBQE
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TABLE IV

DETECTION ACCURACY RATES (%) OF [38]–[40], AND THE PROPOSED METHOD ON THREE DATABASES

TABLE V

CROSS DETECTION ACCURACY RATES (%) OF THE PROPOSED METHOD AND [39] ON THREE DATABASES

Fig. 13. Two failed examples with QF = 70 on UCID.

and TBQE in the first compression cycle, singly compressed
image will be incorrectly identified as doubly compressed
one in general. This is the case with the upper example
in Fig. 13 where no useful information can be used for
features extraction. Furthermore, the doubly compressed image
is easily misclassified as the singly compressed one when there
is slight difference between BQEs in the first two compression
cycles. This is the case with the lower example in Fig. 13
where BQE does not change too much after recompression.

C. Comparison With Some State-of-the-Art Methods

In this subsection, the proposed method is compared with
some state-of-the-art methods [38]–[40]. Detection accuracy
rates of the four methods on the three databases are reported
in Table IV. One can observe that the proposed method is
superior to the other three methods with various QFs and
databases. Especially on BOSSbase database with QF = 70,
the proposed method can achieve the detection accuracy rate
of 84.55%, which is 18%, 12%, and 8% higher than those
of [38]–[40], respectively. Furthermore, compared with the
results in Table II, we can see that the proposed features set
P_fea is able to achieve higher accuracies than those of [40]
in all tested QFs. For example, when QF = 85, P_fea achieves

the detection accuracy rates of 94.31%, 95.06% and 82.08%
on UCID, BOSSbase and SYSU databases, respectively. How-
ever, in the same setting, the method [40] based on single
threshold strategy yields accuracies of 92.94%, 93.80% and
79.43%. It also demonstrates that MTS is more discriminative
than the single threshold based strategy for the detection.

D. Cross Detection Results

To verify the universality of the proposed method, we also
implement the cross detection experiment. That is, the SVM
trained from one of the three databases classifies images
from the other two. The detection accuracy rates are reported
in Table V. The proposed method achieves superior detection
performance to [39] in most cases, indicating that, in general,
the proposed method has better generalization ability than [39]
for mismatched databases. Compared with Table IV, the gen-
eral accuracy rates of the proposed method and [39] decrease
to some content, which is due to the mismatched statistical
differences between training and testing samples. However,
there are some unexpected results. For example, when both
training and testing on UCID at QF = 70, the accuracy
rate of [39] is 80.83%, which is lower than that (84.30%)
of training on SYSU. For the proposed method, when both
training and testing on SYSU at QF = 75, the accuracy
rate is 79.15%, which is lower than that (80.40%) of training
on UCID. The presence of such unexpected results can be
explained as follows. Clearly, if there exists considerable
statistical differences between training and testing samples,
then a SVM classifier unbiased for the training samples may
produce a biased detection result for the testing samples.
Furthermore, the balance between TPR and TNR is usually
achieved at the expense of accuracy. That is, an unbiased SVM
classifier is probably not the one that achieves the highest
accuracy. As a result, an unbiased SVM classifier trained on
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TABLE VI

COMPARISON RESULTS (%) OF TRIPLE JPEG COMPRESSION DETECTION ON UCID DATABASE

TABLE VII

DETECTION ACCURACY RATES (%) ON SMALL PATCHES WITH SIZES OF 256 × 256 AND 128 × 128 ON UCID DATABASE

an image database produces a biased detection result with a
higher accuracy when it is tested on another database. As for
the aforementioned example of [39], when training and testing
both on UCID, the TPR and TNR are 80.82% and 80.84%,
respectively, indicating the detection results are well balanced.
In contrast, when training on SYSU and testing on UCID,
although the classifier achieves a higher accuracy (84.30%)
than that of the proposed method, but with an imbalance
between TPR (90.43%) and TNR (78.17%).

E. Triple JPEG Compression Detection

In this subsection, further experiments are conducted on
UCID database for detecting triple JPEG compression. The
comparison results of Single-Triple and Double-Triple JPEG
compression detections are listed in Table VI. It can be
seen that the proposed method achieves the highest detection
accuracy rates among the four methods in all tested QFs.
For example, the detection accuracy rate of the proposed
method is 82.13%, which is 15%, 11% and 9% higher than
those of methods [38]–[40] for Double-Triple case when
QF = 70, respectively. Clearly, the detection accuracy rates
of Single-Triple JPEG compressions detection are higher than
those of Double-Triple JPEG compressions. This comes from
the fact that the statistical differences between single and triple
JPEG compressions are larger than those between double and
triple JPEG compressions.

F. Evaluation on Small Image Patches

Before ending the evaluation, we perform one more test to
verify the performance of the proposed method on small image
patches. When a portion of a raw image is copy-pasted into a
JPEG image and then the forged image is compressed with the
same quantization matrix used for the JPEG image. The ability
to detect double JPEG compression on small patches is essen-
tial for tampering localization. The experiments are conducted

TABLE VIII

DETECTION ACCURACY RATES (%) WITHOUT

AND WITH MKL ON UCID DATABASE

on image patches with two different sizes, i.e., 256 × 256
and 128 × 128. These patches are central cropped from the
full sized images on UCID database. Table VIII shows the
detection accuracy rates of the proposed method and [38]–[40].
We can observe that the performance of the proposed method
are superior to those of the best one in almost all sce-
narios, except for QF = 95. It implies that the proposed
method has more practical applications than the state-of-the-art
schemes.

G. Classification Accuracy of MKL-SVM

Since classical SVM is a single kernel based learning
algorithm, the detection accuracy rates of the proposed method
for the detection task can be further improved by adopting the
multiple kernels learning (MKL) [51]. Two Gaussian kernels
and two polynomial kernels are exploited in the experiment.
Table VIII shows the detection accuracy rates with MKL and
we can observe that the improvement is obvious, especially for
the case that QF is less than 80. For example, the detection
performance is improved by 1.7% for QF = 75 with MKL.
Besides, the improved accuracies are also higher than those
of [38]–[40].
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V. CONCLUSION

In this paper, a novel method is proposed to detect double
JPEG compression with the same quantization matrix. Based
on an in-depth analysis of the pipeline in successive JPEG
compressions, we find that the rounding/truncation errors as
well as JPEG coefficients tend to converge after multiple
recompressions. Then, BQE is defined, and we derive that the
ratio of non-zero BQE for single compression is larger than
that for double compression. Base on this fact, error-based fea-
tures are extracted from rounding and truncation error blocks,
respectively. To leverage the convergence property of JPEG
coefficients, MTS is designed, in which multiple thresholds
are derived with different modification ratios on JPEG coef-
ficients. Then, perturbation-based features are extracted from
the differences between the multiple thresholds and NDC to
be a supplementary. Finally, the error- and perturbation-based
features are concatenated into a 15-D vector for the detection.
Extensive experimental results demonstrate that the proposed
method provides superior performance to some state-of-the-art
works. In our future work, it is worth making a thorough
analysis on the truncation error blocks, especially for low QFs.
Additionally, the convergence of rounding/truncation errors
and JPEG coefficients in higher JPEG compression cycles can
be used to discriminate multiple compressions.

APPENDIX

According to (6)–(8), we have

Ek+1 = Y k+1 − Zk+1 = W k −
[

W k

Q

]
Q. (27)

To simplify the analysis, we define

ek = Xk − Uk = IDCT(Y k − Zk) = IDCT(Ek). (28)

Then, we can obtain that

W k = DCT(IDCT(Y k+1 − Zk))

= DCT(Xk+1 − Uk)

= DCT([Uk] − Uk)

= DCT([Xk − ek] − Xk + ek)

= DCT(ek − [ek]) = {ek}
= DCT({IDCT(Ek)}). (29)

Here, recall that {x} = x − [x]. Based on (27) and (29),
the relationship between W k+1 and W k can be established
as

W k+1 = DCT({IDCT(Ek+1)})
= DCT

({
IDCT

(
W k −

[W k

Q

]
Q

)})
. (30)
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