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A B S T R A C T

Recently, deep learning based inpainting methods have shown promising performance, in which some multi-
scale networks are introduced to characterize image content in both details and structures. However, few
of these networks explore local spatial components under different receptive fields and internal connection
between multi-scale feature maps. In this paper, we propose a novel multi-scale attention network (MSA-Net)
to fill the irregular missing regions, in which a multi-scale attention group (MSAG) with several multi-scale
attention units (MSAUs) is introduced for fully analysing the features from shallow details to high-level
semantics. In each MSAU, an attention based spatial pyramid structure is designed to capture the deep
features from different receptive fields. In this network, attention mechanisms are explored for boosting the
representation power of MSAU, where spatial attention is combined with each scale to highlight the most
probably attentive spatial components and the channel attention is used as a globally semantic detector to
build the connection between the multiple scales. Furthermore, for better inpainting results, a max pooling
based mask update method is utilized to predict the missing parts from the border regions to the inside. Finally,
experiments on Places2 dataset and CelebA dataset demonstrate that the proposed method can achieve better
results than the previous inpainting methods.
. Introduction

Image inpainting is the task to fill the missing pixels in a corrupted
mage, which can be used in numerous applications, such as image
diting (Tang et al., 2014; Patrick et al., 2003; Portenier et al., 2018),
bject removal (Criminisi et al., 2003; Li et al., 2017; Xiao et al., 2012),
oise removal (Zhang et al., 2017; Rakhshanfar and Amer, 2018), and
he restoration of old photos (Chang et al., 2005). As an ill-posed
nverse problem (Guillemot and Meur, 2013), researchers focus on
redicting the missing areas realistically and accurately by analysing
he known parts of the corrupted image.

Early inpainting methods are divided into diffusion-based inpainting
nd exemplar-based inpainting. Diffusion-based inpainting means to
enerate the local structure via parametric models or partial differential
quations (Shen and Chan, 2002; Chan and Shen, 2001). Although
he diffusion-based methods can generate the connected edges, it is
ifficult for these methods to restore the large missing region or the
issing region with complex textures. On the other hand, exemplar-

ased inpainting methods try to fill the missing regions by exploiting
mage statistical and self-similarity priors (Criminisi et al., 2003; Efros
nd Leung, 1999). However, these methods are effective only when the
riors and the missing parts have the similar textures.

Considering that the convolutional neural network (CNN) and the
enerative adversarial network (GAN) (Goodfellow et al., 2014) can ob-
ain better visual quality, these deep learning technologies are adopted
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in image inpainting (Pathak et al., 2016; Yeh et al., 2017; Yu et al.,
2018; Nazeri et al., 2019; Wang et al., 2018). Pathak et al. (2016)
firstly introduce GAN into image inpainting. They present an unsu-
pervised visual feature learning algorithm driven by context-based
pixel prediction, which can capture not only appearance but also the
semantics of visual structures. And then, Yeh et al. (2017) present
the inpainting algorithm based on global GAN to introduce image
semantics. Subsequently, Yu et al. (2018) and Wang et al. (2018)
complete the corrupted image by both global and local GAN, in which
the small region around the missing areas are adopted in discriminator
to improve the performance of training. Additionally, Nazeri et al.
(2019) propose the PatchGAN based inpainting network to focus on
the patch details. Although the above methods have obtained promising
performance, most of these networks tend to use a standard structure,
in which the convolutional layers are stacked and only one size of
kernel is selected in each layer. Furthermore, few of these methods
adopt the multi-scale structure, especially to explore the locally spatial
information and internal semantic characteristics of the multi-scale
features.

To address these problems, we propose a multi-scale attention net-
work (MSA-Net) for image inpainting, in which a multi-scale attention
group (MSAG) is presented to improve the performance of inpainting
network. Here, several multi-scale attention units (MSAUs) are included
ttps://doi.org/10.1016/j.cviu.2020.103155
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Fig. 1. The framework of MSA-Net.
Fig. 2. The structure of multi-scale attention unit (MSAU).

in MSAG to catch the deep context from low-level details to high-
level semantics gradually. In each MSAU, an attention based spatial
pyramid structure is presented to analyse the image context from
different receptive fields. In the structure, the obtained multi-scale
features are strengthened by the attention mechanisms. Here, a fusing
spatial attention is designed to combine average information, high
activation and deep context of local neurons, which can distinguish the
important spatial components from the feature in a scale. Furthermore,
an augmented channel attention is presented to describe the semantics
of features in all scales, which can emphasis informative maps and
suppress useless deep context. Finally, in order to generate the missing
parts from the border regions to the inside, a max pooling based mask
update method is explored to define the location of the missing region
for each downsampling layer of MSA-Net.

In summary, the contributions of our work can be described as
follows:

• We propose a multi-scale attention network (MSA-Net) for image
inpainting to restore the irregular missing regions, in which both
the internal connection between multi-scale feature maps and the
spatial characteristics of each scales are explored.

• In the MSA-Net, an MSAG with several MSAUs is proposed, in
which an attention based spatial pyramid structure is designed
in an MSAU to capture multi-scale features from appropriate
receptive fields. And for boosting the representation power of
multi-scale context, attention mechanisms are adopted in MSAU

to construct more representative features by fusing both local

2

spatial components in each scale and global channel connections
in all multiple scales.

• For the downsampling layers of MSA-Net, a novel mask update
method (MUM) is utilized to fill the missing parts from the border
regions to the inside, which can mark the spatially valid features
in current layer according to the irregular missing region.

This paper is organized as follows. In Section 2, some related works
about image inpainting methods, multi-scale structure and attention
models are introduced. In Section 3, the details of proposed inpainting
network will be illustrated. And in Section 4, the experimental results
will be displayed and analysed in details. Finally, the conclusion and
future work is summarized in Section 5.

2. Related work

2.1. Image inpainting

Previous image inpainting researches generally fill the missing re-
gions by the diffusion-based inpainting (Shen and Chan, 2002; Chan
and Shen, 2001; Mainberger et al., 2011; Boscain et al., 2018; Zhang
et al., 2014; Amrani et al., 2017) and exemplar-based inpainting (Cri-
minisi et al., 2003; Efros and Leung, 1999; Jin and Bai, 2019; Kumar
et al., 2016; Ružić and Pižurica, 2015). Here, Shen and Chan (2002)
propose a total variation (TV) based general mathematical model for
local non-texture inpainting. Chan and Shen (2001) propose a new in-
painting model based on curvature-driven diffusions (CDD) to improve
TV inpainting by realizing the connectivity principle. Though the above
diffusion-based inpainting methods can ensure local intensity smooth-
ness, they are not suitable to fill large missing regions for producing
blurring artefacts. For better details of textures, the exemplar-based
algorithms try to synthesize textures by directly copying similar patches
from the input images (Akl et al., 2018). Efros and Leung (1999)
propose a non-parametric method for texture synthesis, which can
preserve local structure and produce good results for a wide variety
of synthetic and real-world textures. Criminisi et al. (2003) propose
an algorithm for removing large objects, in which the confidence in
the synthesized pixel values is propagated in a manner similar to the
propagation of information in inpainting. Since the exemplar-based
algorithms fill the holes with suitable image patches, they are effective
only when the priors and the missing parts have the similar textures.

In recent years, many deep learning methods have made dramatic
achievements in image inpainting (Pathak et al., 2016; Yeh et al., 2017;
Yu et al., 2018; Liu et al., 2018; Nazeri et al., 2019; Wang et al.,
2018; Zheng et al., 2019; Guo et al., 2019; Hong et al., 2019). Yang
et al. (2017) propose a multi-scale neural patch synthesis approach,



J. Qin, H. Bai and Y. Zhao Computer Vision and Image Understanding 204 (2021) 103155

w
p
c
i
a
c
a
l
r
g
f
i
p
m
l
t

Fig. 3. Feature visualizations of multiple scales.

Fig. 4. The architecture of fusing spatial attention.

hich can produce high-frequency details by matching and adapting
atches with the most similar mid-layer feature correlations of a deep
lassification network. Yeh et al. (2017) propose a method for semantic
mage inpainting, which predicts information in large missing regions
nd achieves pixel-level photorealism. Liu et al. (2018) employ partial
onvolutions to avoid the colour discrepancy and blurriness and design
mechanism to automatically generate an updated mask for the next

ayer. Nazeri et al. (2019) propose a two-stage adversarial model to
eproducing filled regions with fine details, which includes an edge
enerator and an image completion network. Guo et al. (2019) propose
ull-resolution residual network (FRRN) to fill irregular holes, which
s effective for progressive image inpainting. And Hong et al. (2019)
ropose a concise deep fusion network (DFNet), which can achieve
ore accurate structure information accompanying by the adjustable

oss constraints on each layer. However, few of these methods explore
he locally spatial components and internal structure of deep features.
3

2.2. Multi-scale structure

Inspired by a neuroscience model of the primate visual cortex, Chris-
tian et al. (2015) propose a deep convolutional neural network code-
named Inception, which can improve the performance by increasing
the depth and width of the network while keeping the computational
budget constant. Subsequently, Christian et al. (2016) explore ways to
scale up networks in ways that aim at utilizing the added computa-
tion as efficiently as possible by suitably factorized convolutions and
aggressive regularization.

In addition, to generate more realistic and complex results, image
inpainting models (Yu et al., 2018; Wang et al., 2018) can benefit
from incorporating the same types of features, which can be captured
from different receptive fields, configurations or stages. Yu et al. (2018)
propose a coarse-to-fine inpainting network, which can not only syn-
thesize novel image structures but also explicitly utilize surrounding
image features as references during network training to make better
predictions. And then, Wang et al. (2018) point out the limitation
of the coarse-to-fine architecture, which is that errors in the coarse-
level already influence refinement. For overcoming it, they present
a generative multi-column network for image inpainting, which can
produce visual compelling results even without previously common
post-processing.

In this paper, we adopt the network with only one stage to avoid
the limitation of coarse-to-fine architecture. Besides, motivating by the
astounding performance of Inception structure, we propose an MSAG
to improve the performance of multi-scale structure by analysing the
internal characteristics of the feature, especially investigation of spatial
component and semantic descriptor.

2.3. Attention model

As an important role in human perception, attention model is widely
utilized to improve the performance of networks, in which channel
attention and spatial attention work in global semantics and local
context respectively. For spatial attentions (Woo et al., 2018; Chen
et al., 2017; Xu et al., 2015a; Zhu et al., 2016), they follow the idea
that humans selectively focus on salient parts rather than process a
whole scene at once (Larochelle and Hinton, 2010), which can improve
the representational power of a layer by enhancing the performance of
spatial encodings throughout its deep feature. Xu et al. (2015a) propose
the first attention based model to describe the content of images, in
which the learned alignments correspond very well to human intu-
ition. To further improve the spatial attention, the channel attention is
adopted as a semantic detector to preserve the globally semantic con-
sistency. Hu et al. (2017) focus on the channel relationship and propose
a novel architectural unit, which adaptively recalibrates channel-wise
feature responses by explicitly modelling interdependencies between
channels. Chen et al. (2017) introduce a convolutional neural net-
work (SCA-CNN) to incorporate spatial and channel attentions, which
can dynamically emphasize the attentive in multi-layer feature maps.
And Woo et al. (2018) propose convolutional block attention module
(CBAM), a lightweight and general attention module for feed-forward
convolutional neural networks, in which the feature is refined along
channel axis and spatial axis.

For sharp and accurate results, the recent inpainting networks (Yan
et al., 2018; Yang et al., 2017; Yu et al., 2018; Liu et al., 2019)
present the attention mechanisms with the thought of patch-match
to build the connection between holes and known context. For cor-
relating feature patches at distant spatial locations, Yu et al. (2018)
design contextual attention to match the generated patches with known
contextual patches, in which channel-wise softmax is used to weight
relevant patches. And Liu et al. (2019) propose a coherent semantic
attention (CSA) layer to model the semantic relevance between the
holes features, in which the CSA layer is embedded for refinement of
inpainting network.
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Though above methods have achieved significant progress in local
ixel continuity, few of them analyse the deep feature of each scale in
oth global semantics and local textures. Moreover, they also fail to
odel the connection between scales with different receptive fields.

. The proposed method

In this section, the proposed MSA-Net will be described in details.
irstly, an overview of MSA-Net will be shown, in which the generation
f missing contents is introduced briefly. Then, MSAG is presented to
xtract the multi-scale features, in which MSAUs with attention based
patial pyramid structure will be described. Furthermore, the attention
echanisms will be elaborated in the proposed network, in which

ugmented channel attention, fusing spatial attention and progressive
hannel-spatial attention are used for stronger representation power.
esides, an effective mask-update method is displayed to generate
pecific masks for the downsampling layers in MSA-Net. Finally, the
oss function is discussed for better training.

.1. Overview of MSA-Net

In this paper, MSA-Net is proposed to predict the missing regions
y analysing the available parts of the corrupted image from differ-
nt receptive fields. As shown in Fig. 1, the network is divided into
parts: feature extraction, multi-scale attention group (MSAG) and

mage restoration (IR). In the network, several convolutional layers
re firstly used for shallow feature extraction. And then in MSAG,
everal MSAUs are designed to analyse the deep features from different
eceptive scales, in which an attention based spatial pyramid structure
s combined with attention mechanisms to strengthen the representa-
ions of multi-scale context. Here, spatial attention encodes the spatial
omponent locally, while channel attention describes a feature map
lobally from a semantic viewpoint to emphasis effective channels. In
he downsampling layers of feature extraction and MSAG in Fig. 1,
novel mask update method (MUM) is introduced to mark the valid

ocation of irregular missing region. Finally, in IR part, several image
estoration units (IRUs) are designed with channel-spatial attention to
ocus on the valuable features in both channel axis and spatial axis.

.2. Attention based spatial pyramid structure

As shown in Fig. 1, MSAG contains several MSAUs to aggregate
ulti-scale features from the low-level details to high-level semantics

radually. In Fig. 2, the attention based spatial pyramid structure in
ach MSAU is designed to analyse the features encoding from the
iewpoint of the receptive fields.

From the figure, for extracting the shallow feature 𝐹𝐷, a downsam-
pling convolution is firstly introduced in MSAU as follows:

𝐹𝐷 = 𝜏
(

𝑓𝐾×𝐾
(

𝐹𝐼𝑛𝑝𝑢𝑡
))

(1)

Here, 𝐹𝐼𝑛𝑝𝑢𝑡 is the input feature maps, which consists of feature from
previous layer and corresponding mask update layer. 𝑓𝐾×𝐾 (⋅) is the
onvolution with a 𝐾 ×𝐾 kernel. 𝜏(⋅) denotes ReLU (Xu et al., 2015b)

activation function.
For analysing the locally spatial components from different re-

ceptive fields, the dilated convolutions with different dilation rates
(DiRate) are considered as multiple scales. Here, four parallel dilated
convolutions with the dilation rates of 1, 2, 4 and 8 are selected for the
computation of multi-scale context. In each scale, the extracted feature
𝐹𝑟 can be represented as:

𝐹𝑟 = 𝜏
(

𝑑𝑟𝐾×𝐾
(

𝐹𝐷
))

(2)

Here, 𝑑𝑟𝐾×𝐾 (⋅) is the operator of dilated convolution, in which 𝑟 is the
ilation rate and 𝐾 ×𝐾 is the size of filter.
4

And then, the feature with spatial attention can be calculated as
follows:

𝐹 𝑠
𝑟 = 𝐹𝑟 ⊗ 𝑓𝑠

(

𝐹𝑟
)

(3)

Here, 𝑓𝑠(⋅) is the function to compute map of spatial attention. ⊗ means
element-wise multiplication of spatial attention and each channel of
𝐹 . The weighted result by spatial attention is 𝐹 𝑠

𝑟 . After achieving
the features from all scales, the multi-scale features are concatenated
as 𝐹 𝑠 =

[

𝐹 𝑠
1 , 𝐹

𝑠
2 , 𝐹

𝑠
4 , 𝐹

𝑠
8

]

. And the channel attention is computed as
semantic descriptors to select important channels of 𝐹 𝑠 as:

𝐹 𝑠,𝑐 = 𝐹 𝑠 ⊙ 𝑓𝑐 (𝐹 𝑠) (4)

𝑐 (⋅) is the function of channel attention to calculate the weight of
ach channel. ⊙ is the channel multiplication for each channel of
eature and the corresponding channel weight. Finally, the output is
btained according to the weighted multi-scale features which are
urther aggregated by a convolutional operator in Fig. 2. The details of
he attention mechanisms for MSA-Net will be introduced in the next
ubsection.

In Fig. 3, we visualize the feature of each scale in 𝑀𝑆𝐴𝑈1 of
ig. 1 to illustrate the efficiency of proposed multi-scale structure. From
ig. 3, although the features from larger receptive fields (e.g., DiRate
8) tend to focus on more spatial information, they are not sensitive

n the textures and edges. On the other hand, features with smaller
eceptive fields (e.g., DiRate = 1) can detect image details. Specifically,
n Fig. 3, the features of aircraft fuselage are highlighted with blue
ectangles in the second row and the fourth row. Besides, the third row
nd the last row are the enlarged details of these blue rectangles. From
he figure, it can be seen that the feature maps with DiRate = 8 can
mooth the texture of fuselage for considering more spatial information
rom larger receptive fields, while the feature maps with DiRate = 0 can
isplay more detailed information, such as sand and grassland next to
he fuselage. Therefore, for better inpainting result, the proposed MSAU
s designed to embed local textures into more spatial information.

.3. Attention mechanism for MSA-Net

In Fig. 1, spatial attention, channel attention and channel-spatial
ttention are introduced to improve the representation of features in
SAG and image restoration. In MSAG, a fusing spatial attention is

ombined with each scale to explore the spatial components from
ifferent receptive fields, while channel attention is introduced to em-
hasis the informative channels by modelling the internal relevance of
ulti-scale features. And in image restoration, channel-spatial attention

s presented to analyse the deep feature in both global semantics and
ocal details.

.3.1. Fusing spatial attention
In Fig. 4, for the computation of spatial attention, the deep map

rom a gradual feature extraction model is fused with two pooling
eatures. Here, average-pooling operator and max-pooling operator are
sed to consider the spatial locations of all neurons and to highlight the
patial locations with high activations, respectively (Woo et al., 2018).

It is noted that the gradual feature extraction model is utilized
o detect the complex textures or important details by deep learning
perators. In Fig. 4, 𝐹1 and 𝐹2 are extracted firstly as the summary
f the spatial information with less feature maps. And then, the deep
eature 𝛷𝑓 is used to represent input feature map with only a channel.

For integrating the deep feature into spatial locations, a 2D map 𝑊𝑠
containing the spatial information of input feature map 𝐹 is calculated
as:

𝑊𝑠 = 𝑠3×31

([

𝛷𝑓 , 𝛷𝑀𝑎𝑥_𝑃𝑜𝑜𝑙𝑖𝑛𝑔 , 𝛷𝐴𝑉 𝐺_𝑃𝑜𝑜𝑙𝑖𝑛𝑔

])

(5)

Here, 𝛷𝑀𝑎𝑥_𝑃𝑜𝑜𝑙𝑖𝑛𝑔 and 𝛷𝐴𝑉 𝐺_𝑃𝑜𝑜𝑙𝑖𝑛𝑔 are the results of max pooling

operator and average pooling operator of input feature 𝐹 . 𝛷𝑓 is the
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Fig. 5. Feature visualizations of fusing spatial attention.

Fig. 6. The architecture of augmented channel attention.

esult of gradual feature extraction model. 𝑠𝑚×𝑚𝑛 (⋅) is a convolutional
operator with a 𝑚 × 𝑚 kernel and 𝑛 channels. 𝑊𝑠 is a map of spatial
attention, which is the combination of 𝛷𝐴𝑉 𝐺_𝑃𝑜𝑜𝑙𝑖𝑛𝑔 , 𝛷𝑀𝑎𝑥_𝑃𝑜𝑜𝑙𝑖𝑛𝑔 and

𝑓 .
Finally, the process of spatial attention can be summarized as:
𝑆𝐴 = 𝐹 ⊗𝑊𝑠 (6)

5

Fig. 8. The structure of image restoration.

where the input deep feature 𝐹 is weighted by the spatial attention map
𝑠. ⊗ is the element-wise multiplication of spatial attention and each

hannel of 𝐹 . And 𝐹𝑆𝐴 is the obtained feature processed by the spatial
ttention.

In Fig. 5, we visualize the features from different scales of 𝑀𝑆𝐴𝑈1,
n which the feature before spatial attention, the feature after spa-
ial attention and spatial attention map are displayed to describe the
orrelation between them. From this figure, after spatial attention,
he available regions with more details or complex textures can be
ighlighted by obtaining higher weights of spatial attention map, while
he smooth areas will be suppressed. Therefore, the important spatial
omponents from known areas can be distinguished.

.3.2. Augmented channel attention
In this paper, a channel attention is utilized to model the in-

erdependencies between the channels explicitly, which can improve
epresentation power and preserve important semantic features. In
rder to obtain the channel attention accurately, a shallow feature is
xtracted by the convolutional operator, which is represented by 𝐹𝑠 in

Fig. 6. Subsequently, the channel weights are mainly assigned by two
aspects: globally average activation and channel refinement.

In global average activation, an average pooling is utilized to catch
the global weights 𝑊𝑎 as roughly channel-wise statistics. And in chan-
nel refinement, we squeeze the height and width of input feature firstly
to aggregate semantic information as 𝐹𝐸 , which can be calculated as
follows:

( 3×3 ( ))
𝐹𝐸 = 𝜏 𝑓𝑛 𝐹𝑠 (7)
Fig. 7. The weights of augmented channel attention.
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Fig. 9. The structure of mask update method.

where 𝐹𝑠 is the squeezed feature with 𝑛 channels. 𝑓 3×3
𝑛 (⋅) is the convo-

lutional layer with a 3 × 3 kernel and 𝑛 channels. After the analysis
of input feature 𝐹𝑠, an average-pooling operator is used for further
semantic statistics and generation of channel descriptors. Here, 𝜏(⋅)
means the ReLU activation function. In addition, a 1 × 1 convolution
is adopted for obtaining the shared perception information (SPI) with
size of 𝐶𝐼

𝑟 , which can merge the channel descriptors. In this process, 𝑟
enotes the reduction ratio, which is set to 4 in this paper. After that,
layer is used in the shared channel information to obtain a feature

ector 𝑊𝑟 =
{

𝑤1,… , 𝑤𝑖,… , 𝑤𝐶𝐼

}

, which makes the number of channel
n restored vector consistent with input feature.

For improving the performance of channel attention, 𝑊𝑟 is used to
urther refine roughly channel-wise statistics 𝑊𝑎 as follows:

𝑐 = 𝑊𝑎 +𝑊𝑟 (8)

inally, 𝑊𝑐 is the output channel weights. In short, the adoption of
hannel attention is shown as the following:
𝐶𝐴 = 𝑊𝑐 ⊙ 𝐹 (9) a

6

here ⊙ is the channel multiplication for each channel of feature and
ts corresponding channel weight.

In Fig. 7, we select some representative maps and their channel
eights to illustrate the efficiency of augmented channel attention.
rom this figure, the informative maps with complex context will
e aligned higher weights, while the useless maps will obtain lower
eights.

.3.3. Progressive channel-spatial attention
For the deep feature, spatial attention works locally in each channel,

nd channel attention is globally for all feature maps from a spatial
iewpoint. As shown in Fig. 8, for realistic results, a sequentially
rogressive channel-spatial attention is introduced in image restoration
o focus on the vital features in both spatial axis and channel axis. Each
𝑅𝑈𝑖 of image restoration can be denoted as follows:
𝑐,𝑠
𝑖 = 𝑠

(

𝑐
(

ℎ𝑖
(

𝑈𝑖−1
)))

, (0 < 𝑖 ≤ 3) (10)

where 𝑠(⋅) and 𝑐(⋅) mean the operators of spatial attention and channel
ttention respectively. ℎ𝑖(⋅) is the 𝑖th deconvolutional layer for image
estoration. 𝑈𝑖 is the extracted feature of 𝑖th restoration layer ℎ𝑖.

.4. Mask update method

Since the missing region is irregular, it is difficult for the filter
o define the location of missing region. Here, for marking the valid
ocation of each downsampling layer, a space based mask update
ethod (MUM) is realized by max-pooling operator, which involves the

eature extraction and MSAG in Fig. 1. Inspired by Uhrig et al. (2017),
0–1 matrix is applied to represent the damaged image effectively, in
hich the missing regions are equal to 0, and the available regions of

orrupted image are equal to 1. As shown in Fig. 9, in MSAG, the masks
re introduced to match with the multi-scale feature maps, which are
Fig. 10. The comparisons of the model without MSAG (Single Scale) and the models with Inception V1, Inception V3 and MSAUs in Places2 dataset.
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Fig. 11. The comparisons of the model without mask update method (No-MUM) and
the MSA-Net in Places2 dataset.

updated as unfilled regions and valid regions. Therefore, the multi-scale
masks can carry the valid information to subsequent layers to guide the
restoration of damaged image from the boundary of missing areas to
centre gradually.

3.5. Loss function

For better training of MSA-Net, 𝐿2 loss, perceptual loss and style
oss are used to represent the differences in pixel level and feature level.
hese loss functions are described in the following.

Here, 𝐿2 loss is used to represent the pixel-level difference between
he filled image and the original image, which is defined as follows:

2 =
1

𝑊 ∗ 𝐻 ∗ 𝐶
‖𝐼∗ − 𝐼‖2 (11)

here 𝐼∗ denotes the filled image and 𝐼 means the original image.
, 𝐻 and 𝑊 are the channel size, height and width of the image 𝐼 .
nd ‖ ⋅ ‖2 is a 2 norm. 𝐿2 loss is effective in the image inpainting to
apture the overall structure of the missing region (Pathak et al., 2016).
owever, it is difficult for 𝐿2 loss to recover sharp edges, which may

ead to overly-smooth results (Lim et al., 2017).
For a better restoration, perceptual loss and style loss are further

dded in the proposed MSA-Net to consider the correlations between
he original images and the damaged images in the feature level.

For the perceptual loss, it can be then calculated as follows:

𝑝𝑒𝑟𝑐𝑒𝑝𝑡𝑢𝑎𝑙_𝑙𝑜𝑠𝑠 =
𝑃
∑

𝑖=1

1
𝑊𝑖 ×𝐻𝑖 × 𝐶𝑖

‖𝐹𝑂𝑢𝑡
𝑖 − 𝐹𝐺𝑇

𝑖 ‖2 (12)

here 𝐹𝑂𝑢𝑡
𝑖 and 𝐹𝐺𝑇

𝑖 are the 𝑖th feature maps with size of 𝐻𝑖 ×𝑊𝑖 ×𝐶𝑖.
or our work, 𝐹𝑖 corresponds to feature maps from aggregated multi-
cale layer and deconvolutional layers in image restoration, which are
hown in Fig. 1.
7

Furthermore, for the style loss, Gram Matrix is introduced firstly
y Gatys et al. (2015) as:
𝑂𝑢𝑡
𝑖 = 𝛾

(

𝐹𝑂𝑢𝑡
𝑖

)𝑇 𝛾
(

𝐹𝑂𝑢𝑡
𝑖

)

, (0 < 𝑖 ≤ 3) (13)

𝐺𝐺𝑇
𝑖 = 𝛾

(

𝐹𝐺𝑇
𝑖

)𝑇 𝛾
(

𝐹𝐺𝑇
𝑖

)

, (0 < 𝑖 ≤ 3) (14)

Here, 𝐹𝑂𝑢𝑡
𝑖 is the feature obtained by the input of damaged image

and 𝐹𝐺𝑇
𝑖 is the feature map with the input of original image. 𝛾 is the

vectorization process of 𝐹𝑂𝑢𝑡
𝑖 and 𝐹𝐺𝑇

𝑖 with sizes of
(

𝐻𝑖 ×𝑊𝑖
)

×𝐶𝑖, and
the sizes of 𝐺𝑂𝑢𝑡

𝑖 and 𝐺𝐺𝑇
𝑖 are 𝐶𝑖 ×𝐶𝑖. Then, the style loss is defined as

follows:

𝐿𝑠𝑡𝑦𝑙𝑒_𝑙𝑜𝑠𝑠 =
𝑃
∑

𝑖=1

1
𝐶𝑖 × 𝐶𝑖

‖𝐾𝑖
(

𝐺𝑂𝑢𝑡
𝑖 − 𝐺𝐺𝑇

𝑖
)

‖1, (0 < 𝑖 ≤ 3) (15)

here 𝐺𝑂𝑢𝑡
𝑖 and 𝐺𝐺𝑇

𝑖 are the Gram Matrices of the 𝑖th selected layers
𝑂𝑢𝑡
𝑖 and 𝐹𝐺𝑇

𝑖 respectively. 𝐾𝑖 is the normalization factor 1
𝐻𝑖×𝑊𝑖×𝐶𝑖

of
𝑂𝑢𝑡
𝑖 and 𝐺𝐺𝑇

𝑖 . And ‖ · ‖1 is the 1 norm.
Finally, the total loss of this inpainting method can be denoted as

ollows:

= 𝛼 × 𝐿2 + 𝛽 × 𝐿𝑝𝑒𝑟𝑐𝑒𝑝𝑡𝑢𝑎𝑙_𝑙𝑜𝑠𝑠 + 𝛾 × 𝐿𝑠𝑡𝑦𝑙𝑒_𝑙𝑜𝑠𝑠 (16)

ere, 𝛼, 𝛽 and 𝛾 are used to weight these three types of loss functions.
n this paper, for limiting 𝐿2, 𝐿𝑝𝑒𝑟𝑐𝑒𝑝𝑡𝑢𝑎𝑙_𝑙𝑜𝑠𝑠 and 𝐿𝑠𝑡𝑦𝑙𝑒_𝑙𝑜𝑠𝑠 in appropriate

data ranges, 𝛼, 𝛽 and 𝛾 are 1, 0.001 and 250 respectively.

4. Experimental results

In order to demonstrate the validity of the proposed inpainting
network, it is conducted on Places2 dataset (Zhou et al., 2018) and
CelebA dataset (Liu et al., 2015). We use the original train set and test
set for Places2. As for the CelebA-HQ, 28 K and 2 K images are used as
training set and test set respectively. Moreover, we test the proposed
MSA-Net in an irregular mask dataset released by Liu et al. (2018). All
the masks and images are with the size of 256 × 256.

In the training phase, we set the learning rate to 0.0003. And after
raining, the model is refined by 0.0001. We use peak signal-to-noise
atio (PSNR), structural similarity index (SSIM) (Wang et al., 2004)
nd the visual quality of the filled image to evaluate the performance
f MSA-Net. PSNR is the comparison in pixel level, while SSIM is the
olistic similarity between the original image and the restored image.
e train on a single GPU of Titan XP (12GB) with a batch size of 16.

he model of Places2 dataset is trained for 7 days, whereas CelebA-HQ
or 3 days. And the average test time of an image is about 0.026 s in
oth Places2 and CelebA-HQ.

.1. Ablation study

In this subsection, for discussing the importance of MSAG, we
irstly compare the model with several scales and the model with only
ne scale. And then, we discuss the efficiency of the max pooling
ased adaptive mask update method. Afterwards, we further illustrate
he performance of attention mechanisms, which contain fusing spa-
ial attention, augmented channel attention and progressive channel-
patial attention. Finally, we also compare our MSA-Net with previous
ethods.

.1.1. Investigation of MSAG
For improving the performance of MSA-Net, we design the structure

f MSAG to achieve the multi-scale context. For making a comparison
ith MSAG, we also test the models that replaces the MSAG structure
ith the single-scale dilated convolutions and two representative multi-

cale structures from Inception V1 (Christian et al., 2015) and Inception
3 (Christian et al., 2016). The multi-scale structures of 𝑀𝑆𝐴𝑈1 and

these in Inception V1 or Inception V3 are shown in Table 1, in which
the parameters of related structures are unified to similar parameters.

Here, an inception unit in V1 is divided into four scales, which have
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Table 1
The multi-scale structures of MSAU, Inception V1 and Inception V3.

Inception V1 Inception V3 MSAU

Operator Output Operator Output Operator Output

Multiple scales

Scale 1 Layer 1 Conv 1 × 1 192 Conv 3 × 3 192 DiConv 3 × 3 (rate = 1) 48

Scale 2
Layer 1 Conv 1 × 1 96 Conv 1 × 1 32 DiConv 3 × 3 (rate = 2) 48
Layer 2 Conv 3 × 3 192 Conv 3 × 3 48 – –
Layer 3 – – Conv 3 × 3 48 – –

Scale 3
Layer 1 Conv 3 × 3 24 Max pooling 3 × 3 128 DiConv 3 × 3 (rate = 4) 48
Layer 2 Conv 1 × 1 64 Conv 1 × 1 64 – –

Scale 4 Layer 1 Max pooling 3 × 3 128 – – DiConv 3 × 3 (rate = 8) 48
Layer 2 – – Conv 1 × 1 64 – –

Multi-scale maps 512 304 192
Parameter of multi-scale structure 240K 268K 221K
Reduce Conv 1 × 1 Conv 1 × 1 –
Output maps 192 192 192
Total parameter 338K 326K 221K
Table 2
The comparisons of MSA-Net with the single-scale structure, Inception V1 and Inception
V3 in Places2 dataset.

Single scale Inception V1 Inception V3 MSAG

PSNR 26.513 26.535 26.553 26.580
SSIM 0.8768 0.8761 0.8771 0.8775

the same number of scales with MSAU. And the structure of Inception
V3 is a way to expand the filter banks with less parameters. At the end
of Inception V1 and V3, in order to ensure the output map number of
inception units are the same as MSAU, we added a convolution layer
to aggregate the multi-scale feature and realize the output map number
of inception units.

From Table 2, it can be seen that the usage of MSAG can obtain
more accurate results. In addition, the visual quality of the MSA-Net
and the network without MSAG is also shown in Fig. 10, in which we
8

can see that the results in MSAG are better restoration in texture than
the model with other multi-scale structures.

4.1.2. Investigation of mask update method
A mask update method (MUM) is used in down-sampling layers of

MSA-Net to guide the feature extraction from the boundary of missing
areas to centre gradually. For displaying the effectiveness of this mask
update method, the results of the proposed MSA-Net are compared with
the network without mask update in Table 3, which shows that MSA-
Net has better inpainting performance than the model without MUM.
Furthermore, some results of the comparison are shown in Fig. 11, from
which we can find that the visual quality of the proposed method is
more realistic and accurate than the model without MUM.

4.1.3. Analysis of attention mechanism
We compare the MSA-Net with the models that apply different

attention mechanisms in Table 4 to clearly show their performance,
Fig. 12. The effectiveness of channel attention in MSAG (C-A), spatial attention in MSAG(S-A) and channel-spatial attention in IR (CS-A).
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Fig. 13. The comparisons of the proposed attentions in Places2 dataset with them in CMBA, SCA-CNN and SE-Net.
Table 3
The comparisons of MSA-Net in Places2 dataset with the network
without mask update.

No-MUM MUM

PSNR 26.580 26.615
SSIM 0.8775 0.8788

Table 4
The effectiveness of channel attention (C-A), spatial attention (S-A) and channel-spatial
attention (CS-A) in Places2 dataset.

C-A S-A CS-A PSNR SSIM

✗ ✗ ✗ 26.615 0.8788
✓ ✗ ✗ 26.633 0.8802
✗ ✓ ✗ 26.690 0.8803
✓ ✓ ✗ 26.692 0.8809
✗ ✗ ✓ 26.724 0.8816
✓ ✓ ✓ 26.802 0.8820

which contains channel attention in MSAG (C-A), spatial attention in
MSAG (S-A) and channel-spatial attention in IR (CS-A). It is shown that
with the addition of C-A, S-A and CS-A, the results are gradually getting
better in PSNR and SSIM.

In addition, for illustrating the efficiency of our proposed attention
mechanisms, we compare them with CBAM (Woo et al., 2018), SCA-
CNN (Chen et al., 2017) and SE-Net (Hu et al., 2017). Here, CBAM and
SCA-CNN design both spatial attention and channel attention, while SE-
Net only proposes a channel attention. Therefore, as shown in Table 5,
the results of CBAM and SCA-CNN are the models that both spatial
9

Table 5
The comparisons of the proposed attention mechanism with other attention methods
in Places2 dataset.

CBAM SCA-CNN SE-Net MSA-Net

PSNR 26.710 26.728 26.758 26.802
SSIM 0.8811 0.8805 0.8817 0.8820

attention and channel attention are replaced. And for the model of
SE-Net, only channel attention is replaced in MSA-Net.

Furthermore, the visual quality is displayed in Figs. 12 and 13, in
which it can be observed that the proposed attention based network
can obtain more accurate results in colour consistency and the image
contents.

4.2. Comparisons with other inpainting methods

In order to evaluate our proposed MSA-Net, it is compared with
CA (Yu et al., 2018), PConv (Liu et al., 2018), EdgeConnect (Nazeri
et al., 2019) and GMCNN (Wang et al., 2018), in which PSNR and SSIM
are used as image quality metrics. The trained models are compared
on the Places2 dataset and CelebA dataset. The results are displayed
in Table 6, in which all the methods are tested in an irregular mask
dataset (Liu et al., 2018). The irregular mask dataset is further catego-
rized by the size of missing regions, which can generate six categories
with different missing region ratios: (0.01, 0.1], (0.1, 0.2], (0.2, 0.3],
(0.3, 0.4], (0.4, 0.5] and (0.5, 0.6] mask for all sizes. Furthermore,
we also test the model in regular masks with fixed size, in which the
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Fig. 14. The comparisons of the final results with CA (Yu et al., 2018), EdgeConnect (Nazeri et al., 2019) and GMCNN (Wang et al., 2018) in Place2 dataset and CelebA dataset.
Table 6
The quantitative evaluation of MSA-Net in Places2 dataset and CelebA dataset.

(0.01, 0.1] (0.1, 0.2] (0.2, 0.3] (0.3, 0.4] (0.4, 0.5] (0.5, 0.6] Fixed

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Places2

CA 30.71 0.964 24.56 0.898 21.34 0.813 19.27 0.725 17.84 0.636 16.42 0.523 20.66 0.774
PConv 34.05 0.946 28.02 0.869 24.90 0.777 22.45 0.685 20.86 0.589 18.63 0.476 – –
EdgeConnect – – 27.95 0.920 24.92 0.861 22.84 0.799 21.16 0.731 – – 21.75 0.823
GMCNN 34.84 0.986 28.81 0.957 25.42 0.912 22.96 0.854 20.86 0.778 17.20 0.593 18.88 0.737
MSA-Net 35.80 0.988 30.03 0.965 26.88 0.929 24.69 0.884 22.91 0.826 20.51 0.701 22.89 0.810

CelebA

CA 33.37 0.981 27.71 0.946 24.66 0.902 22.29 0.844 20.37 0.775 18.11 0.667 23.12 0.861
EdgeConnect 39.60 0.985 33.51 0.961 30.02 0.928 27.39 0.890 25.28 0.846 22.11 0.771 25.49 0.891
GMCNN 32.66 0.978 26.63 0.938 23.50 0.890 21.23 0.832 19.66 0.773 17.75 0.690 25.00 0.905
MSA-Net 38.55 0.994 33.12 0.982 30.20 0.967 27.90 0.945 25.99 0.917 23.22 0.852 26.29 0.916
missing areas account for 25% of all image pixels. And the fixed masks
are centred at a random location within the test image.

In Table 6, the results of Places2 dataset for Liu et al. (2018)
and Nazeri et al. (2019), and CelebA for Nazeri et al. (2019) are taken
from their paper. And other results are generated by their pre-trained
10
weights respectively, if they are available online. From the tables, it can
be seen that our method can produce more accurate results than others.
Moreover, it can be observed clearly from Fig. 14 that the proposed
MSA-Net also outperforms other inpainting algorithms in subjective
vision.
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Fig. 15. The results of removing occlusions on ImageNet dataset and LFW dataset.
.3. Object removal

Object removal is one of main applications in image inpainting,
hich means to remove the unnecessary objects or unwanted occlu-

ions, such as the passing-by person or some scratches. Here, in order
o show the efficiency of our network, we also display the results of
cclusion removal in Fig. 15, in which the inpainting models in natural
mages and face images are tested in ImageNet (Deng et al., 2009) and
abelled faces in the wild (LFW) (Huang et al., 2012) respectively. From
his figure, it can be seen that the proposed network can remove the
nnecessary objects in images naturally.

. Conclusion and future work

In this paper, we propose a novel multi-scale attention network
MSA-Net) for image inpainting to fill the irregular missing regions.
or extracting the multi-scale context gradually, we design a multi-
cale attention group (MSAG), which consists of several multi-scale
ttention units (MSAUs). MSAU is the structure to capture features from
arious receptive fields, in which dilated convolutions with different
ilation rates can be regarded as the various scales. Furthermore, three
ttention mechanisms are introduced to analyse the locally spatial
omponents of each scale and internal semantic characteristics of multi-
cale features, which consist of the fusing spatial attention, augmented
hannel attention and progressive channel-spatial attention. Moreover,
n order to get a realistic and accurate results, the max pooling based
ask update method is introduced to predict the missing parts from

he border regions to the inside. Finally, the experimental results have
emonstrated the superior performance of our proposed MSA-Net on
estoration of damaged image.

However, the proposed algorithm may exist blurriness in the gen-
rated contents when the missing areas are large, which is still a
hallenge in the image inpainting to restore the large missing regions
ccurately and realistically. Aiming at this problem, we will further
11
extend the work to explore the connection between the missing regions
and the available information of the corrupted image, in which the
texture and multi-scale structure will be combined to improve the
performance of inpainting network.
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