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ABSTRACT

Owing to the complexity of the underwater environment and the limitations of imaging devices, the quality
of underwater images varies differently, which may affect the practical applications in modern military,
scientific research, and other fields. Thus, achieving subjective quality assessment to distinguish different
qualities of underwater images has an important guiding role for subsequent tasks. In this paper, considering
the underwater image degradation effect and human visual perception scheme, an effective reference-free
underwater image quality assessment metric is designed by combining the colorfulness, contrast, and sharpness
cues. Specifically, inspired by the different sensibility of humans to high-frequency and low-frequency
information, we design a more comprehensive color measurement in spatial domain and frequency domain. In
addition, for the low contrast caused by the backward scattering, we propose a dark channel prior weighted
contrast measure to enhance the discrimination ability of the original contrast measurement. The sharpness
measurement is used to evaluate the blur effect caused by the forward scattering of the underwater image.
Finally, these three measurements are combined by the weighted summation, where the weighed coefficients
are obtained by multiple linear regression. Moreover, we collect a large dataset for underwater image quality
assessment for testing and evaluating different methods. Experiments on this dataset demonstrate the superior

performance both qualitatively and quantitatively.

1. Introduction

The ocean covers 71% of the earth’s surface and is an important part
of the earth’s resources, but its exploration is only 5%, and the devel-
opment is less than 1%. As an important carrier and expression form of
underwater information, underwater images play an irreplaceable and
significant role in the underwater environment perception and marine
monitoring. However, due to the influence of the special physical
and chemical underwater environment, the quality of the obtained
underwater images is a mixed bag, and the degradation such as color
distortion, low contrast, blurry details, and poor clarity often occurs,
which makes the underwater image “invisible”, “inaccurate”, and “in-
complete”, and seriously affects the interpretation of the image content.
Therefore, in the underwater application system, how to effectively
evaluate and predict the quality of different underwater images has
important guiding significance for subsequent tasks, such as underwater
image enhancement [1-4], detection [5], and classification [6].

The image quality assessment algorithm for in-air images has been
investigated comprehensively and achieved good performance. In fact,
the quality assessment for in-air images and underwater images both
belong to the category of image quality assessment. Many generic im-
age IQA techniques can also be appropriately extended to underwater
IQA scenario, such as frequency domain analysis. However, due to
the unique underwater shooting environment, the obtained underwater
images have different attributes and characteristics compared with the
in-air images, thus it is usually impossible to obtain reliable results
by directly transplanting the general IQA method to the underwater
image. As shown in Fig. 1, the right image is much clearer than the
left image, and has a higher MOS value, but the results obtained by
general IQA measurements (i.e. CODE [7] and EMBM [8]) are just the
opposite. First, the water usually contains suspended solids and various
active organisms, which causes the light reflected by the underwater
scene to be absorbed and scattered by the particles suspended in the
medium before reaching the camera, resulting in low contrast and foggy
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Fig. 1. The general IQA results of underwater images. (a) EMBM: 0.58; CODE: 5.18,
(b) EMBM: 0.55; CODE: 4.84.

effects. Specifically, the backward scattering effect generally minifies
the gray range and induces the low contrast of underwater image. The
forward scattering effect generally leads to point spread phenomenon
and underwater image blurring. Second, the attenuation of light de-
pends on the wavelength of the light, the dissolved organic compounds
and so on. The selective absorption of light will cause different degrees
of color distortion. In general, blue and green lights have shorter
wavelengths and higher frequencies, and thus their penetration ability
is stronger. This is why underwater images usually exhibit blue and
green. However, such degradation factors are not common in in-air
images. With these in mind, we specialize in an image quality assess-
ment method for underwater image in this paper. Starting from the
degradation characterizations, the colorfulness, contrast, and sharpness
can be used to evaluate the overall underwater image according to the
different properties of the water medium. In this paper, considering the
human visual perception scheme, we propose an effective reference-
free underwater image quality assessment metric by combining these
three attributes. Our main contributions lie in the upgradation and
refinement of the colorfulness and contrast metrics.

For the colorfulness metric, the existing methods mainly evaluated
the image quality in the spatial domain by calculating the standard
deviation or the average value of chroma and saturation. In reality, the
human visual system has different perception capabilities for the high-
frequency and low-frequency components of an image. Inspired by this,
we design a colorfulness metric in frequency domain to supplement
the spatial domain metric, thereby obtaining a more comprehensive
color evaluation measurement for underwater image. For the contrast
metric, the existing methods used the gray-scale intensity of the image
to calculate the contrast. However, the ability to distinguish different
image qualities is limited. Considering the dark channel prior (DCP)
can be used to remove the fogging effect of the input image, the under-
water images with different qualities can be distinguished according
to different DCP values. Thus, we designed a DCP weighed contrast
measurement, utilizing the DCP value to refine the existing contrast
metric and further enlarge its distinguishable range. In addition, the
lack of datasets limits the development of this field to a certain ex-
tent. To this end, we conduct quality evaluation experiments on the
Underwater Image Enhancement Benchmark (UIEB) [9] to obtain the
corresponding quality ground truth, and form an Underwater Image
Quality Assessment (UWIQA) dataset that can bridge the gap between
the algorithm and data, thereby enriching the diversity of underwater
image processing tasks.

All in all, the main contributions of this paper are summarized as
follows:

« Inspired by the different sensibility of humans to high-frequency
and low-frequency information, we design a color measurement
in frequency domain to supplement the spatial domain metric.
In order to improve the distinguishing ability of the contrast
measurement, we propose a dark channel prior weighted contrast
measure.

An Underwater Image Quality Assessment (UWIQA) dataset is
constructed by conducting the subjective evaluation experiments
on the UIEB, which bridges the gap between the algorithm design
and data validation.
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The rest of this paper is organized as follows. The related work
of underwater image quality assessment algorithms are introduced
in Section 2. Then, the proposed evaluation metrics and the UWIQA
dataset are presented in Sections 3 and 4, respectively. The experimen-
tal comparisons and analyses are conducted in Section 5. Finally, the
conclusion is drawn in Section 6.

2. Related works

In this section, we will briefly summarize the image quality assess-
ment (IQA) models and methods, and then introduce the existing IQA
methods for underwater images.

Image quality assessment plays an important role in image process-
ing, mainly by analyzing and studying the characteristics of the image
to achieve the assessment of the image quality (i.e., the degree of image
distortion) [10]. According to the amount of information required
from the original image, image quality assessment can be classified
into full-reference (FR) IQA [10-13], no-reference (NR) IQA [14-16],
and reduced-reference (RR) IQA [17-20]. FR-IQA models has both
the distorted images and original images (i.e., undistorted/reference
image), and the quality score of the image is determined by directly
comparing the information or feature similarity of the two images,
which is a relatively mature research direction. However, in many
practical scenarios, it is difficult to obtain the reference images, so more
and more work is concentrated on RR-IQA and NR-IQA. RR-IQA models
only require part of the features extracted from the reference image,
while the NR-IQA models get rid of the constraints of the reference
image, and only the distorted image is needed. As the most challenging
issue in IQA, NR-IQA is closer to the actual situation and has gradually
become a research hotspot in recent years. Deep learning technology
has already demonstrated strong learning capabilities and performance
advantages in many computer vision tasks, such as saliency detec-
tion [21-27], image enhancement [28-31], object tracking [32], etc.
Recently, some neural networks have been successfully applied to
image quality assessment [33-40].

However, due to different imaging principles, directly applying the
in-air IQA [10,14,17,41-44] to underwater IQA issue often fails to
achieve good performance. Therefore, some specially designed IQA
models for underwater image are proposed based on the specific char-
acteristics of underwater images. At the same time, for the underwater
image, it is almost impossible to obtain reference images, so studying
the NR-IQA methods has become the only way out. Miao et al. [45]
proposed an underwater color image quality evaluation metric (UCIQE)
based on standard deviation of chroma, luminance contrast, and av-
erage of saturation, which also can be applied to underwater video.
Inspired by human visual system, Panetta et al. [46] proposed an under-
water image quality method (UIQM) by considering the colorfulness,
sharpness, and contrast, which is well related to perceived underwater
image quality. Analyzing the underwater absorption and scattering
characteristics, Wang et al. [47] proposed the underwater image quality
assessment metric named CCF, which is based on colorfulness measure,
contrast measure, and fog density measure.

3. Proposed method

In this section, an underwater image quality assessment metric
is proposed by combining the colorfulness, contrast, and sharpness
indexes. For the different representations of the underwater images
degradation, we design three sub-measurements: (1) Enlightened by the
different perception of humans to high-frequency and low-frequency
components, we design a more comprehensive color measurement
in both spatial domain and frequency domain to quantify the color
distortion of underwater image caused by the absorption effect. (2)
Based on the observation that different qualities of underwater images
can be distinguished by the dark channel prior (DCP) values, we design
a DCP weighed contrast measurement to evaluate the low contrast of
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Fig. 2. The DCT coefficients of different underwater images with different qualities. (a)-(d) represent the original underwater images and their corresponding DCT coefficients.
(e)—(h) represent the underwater image enhanced by [48] and the corresponding DCT coefficients.

underwater image caused by the forward scattering. (3) For the blurring
effect of the underwater image caused by the backward scattering,
we assess its quality using the sharpness measurement. Finally, these
three indexes are weighted combined into a holistic metric, where
the multiple linear regression (MLR) method is applied to obtain the
weighted coefficients. We will provide more details in the following
subsections.

3.1. Colorfulness measure

The selective absorption effect of light in the underwater medium
will cause serious color deviation of the underwater images. Generally
speaking, when quantizing the influence of colorfulness distortion, the
traditional colorfulness measurements mainly analyze the image in the
spatial domain. In fact, the human visual system has different percep-
tion capabilities for high-frequency and low-frequency components of
images. Moreover, underwater images with different qualities should
contain different high-frequency and low-frequency components. In
other words, the recorded colorfulness changes are not only reflected
in the spatial domain, but also in the frequency domain.

Through the discrete cosine transform (DCT), the underwater image
can be transformed from the spatial domain to the frequency domain, in
which the energy of the image is mainly concentrated in a certain local
area, and the image characteristics can be described by a small amount
of DCT coefficients. Theoretically, the low-frequency coefficients in
the frequency domain reflect the flat area information in the image,
mainly concentrated in the upper left corner of the frequency domain
map, and the high-frequency coefficients usually describe the image
boundary and texture information, corresponding to the other areas.

For underwater images with different qualities, we calculate the corre-
sponding DCT coefficients and show them in Fig. 2. By observing the
DCT coefficients, we can see that the distribution of DCT coefficients
of different quality images has obvious differences. For example, the
DCT coefficients of poor quality underwater images (e.g., the mean
opinion score (MOS) of Fig. 2(a) is 0.2) are mainly concentrated in the
upper left corner, while the other areas are almost zero. By contrast,
the distribution range of DCT coefficients for better quality underwater
images (e.g., the MOS of Fig. 2(d) is 0.9) is obviously wider. Inspired by
this, on the basis of colorfulness measurement in the spatial domain, we
define a colorfulness measurement in the frequency domain by using
the DCT coefficients.

In order to evaluate the colorfulness of underwater images of dif-
ferent qualities more comprehensively, the final colorfulness measure
is defined as the product of colorfulness metric in frequency domain
and the colorfulness metric in the spatial domain. The formula is as
follows:

Color fulness = Color fulness, X Color fulness ;, (€8]

where Color fulness; and Color fulness, are the colorfulness metric in
the spatial domain and frequency domain, respectively. Similar to the
UCIQE [45], the variance of chroma is used to define the colorfulness
metric in spatial domain because it has a good correlation with human
perception of underwater color images:

Colorfulness; = o,

| Moy )
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(c)

Fig. 3. (a)-(b) Original underwater images. (c)-(d) Underwater images enhanced
by [48].

where o), denotes the standard deviation of chroma, [;; is the chroma
component of the image in the CIELab space, I represents the mean
value of the chroma component in the CIELab space, M and N indicate
the height and width of the underwater image, respectively. For the
colorfulness metric in frequency domain, we calculate the standard
deviation of the DCT map, which is defined as:

Color fulness; = opcr

_ \/ZIIZI Zf’:l(DCT,.j — DCT)? 3)
- MN ’

where DCT;; represents the DCT coefficient at the position (i, j) of the
input image, and DCT represents the mean value of the DCT map
calculated by the discrete cosine transform of the input underwater
image.

In Fig. 3, we provide some comparisons of different underwater
images. For the different original images, Fig. 3(b) is visually better
than the Fig. 3(a), and the consistent result is obtained by using our
colorfulness metric. When comparing the image before and after en-
hanced by the method [48], the enhanced images have richer and more
realistic colors than the original underwater images. Consistent with
human subjective visual perception, through our proposed color mea-
surement, the enhanced underwater image also obtains a higher score,
which demonstrates the effectiveness of our proposed measurement.

3.2. Contrast measure

In addition to the color distortion of the underwater image caused
by the selective absorption effect, the light scattering in the underwater
medium can also cause the low contrast and blurring in the image.
Backscattering is an optical effect caused by non-target scattered light
that encounters suspended particles in water and randomly scattered
at a small angle before reaching the camera lens. This causes the haze-
like phenomenon in the underwater images, greatly lowers the scene
contrast, and affects the image quality [49]. Therefore, the contrast
measurement is also an important part of underwater image quality
evaluation.

In [47], Wang et al. used the sum of contrast metric values from
edge image blocks to represent the blurring of an underwater image
and define the contrast measurement. First, the underwater image is
divided into some blocks with the size of 64 x 64, and Sobel operator
is used to generate the edge map. With the obtained edge map, we can
judge whether the block belongs to the flat or edge block. Specifically,
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if the number of edge pixels in a block is greater than 0.2% of the total
pixels, the block is selected as an edge block [50]. Then, the contrast
measure of the underwater image is defined as the sum of root mean
square (RMS) contrast values of all the edge blocks:

K
N2
Contrastoep = Z % 2 (Irl’.‘j - Ir) , 4
k=1 =1 j

=1 j=

where I rf.‘j is the red intensity value of the pixels in the kth edge block
with size X by Y, K is the number of edge blocks, and Ir represents
the average red intensity of pixels in the underwater image.

However, directly using the contrast measure in [47] is not good for
distinguishing images of different qualities. For example, the MOSs of
Fig. 4(a) and (c) are 0.1 and 0.4, respectively, but the measured contrast
value [47] is 0.0315 and 0.0211 respectively. Thus, in this paper, we
aim at refining the contrast measure and enlarging the distinguishable
range. He et al. [50] proposed a defogging algorithm based on the
observation that some pixels always have at least one color channel
with a very low value in the vast majority of non-sky local areas. This
prior is named as dark channel prior (DCP). Thus, the DCP map of a
fog-free image should have a lower intensity value, while fog image
should have a significantly higher intensity. In fact, the underwater
image and fog image have certain similarities, and both can be modeled
by the atmospheric scattering model. Therefore, underwater images
with different qualities should also have different dark channel prior
maps. In Fig. 4, we provide some examples of DCP maps under different
quality underwater images. Fig. 4(a) has a poor quality (MOS = 0.1),
so its DCP map has a high intensity. However, Fig. 4(d) is relatively
clear (MOS = 1), and its DCP map has a low intensity. In summary,
for underwater images with different contrast degrees, the greater the
contrast, the darker the DCP map. Thus, we design a DCP weighted
contrast measurement to refine the existing CCF contrast metric.

First, the DCP method [50] is applied to the input underwater image
and generate the DCP map I¥,

dark — H H c
I (x) = i )(CEI{E?, b)I (€)X (5)
where /¢ represents each channel of the underwater image, ¢ € r, g, b,
¥(x) denotes a window centered on the pixel x, and the window width
is set to 15.

Then, considering that the intensity of the DCP map is inversely
proportional to the contrast of the underwater image, we calculate the
DCP weighting coefficient through a exp function of the mean value of
the DCP map, which is defined as:

Idark
Wpcp = exp(——
c

), (6)

where ¢ is a parameter, which is fixed to 10.
Finally, the overall contrast measurement weighted by the DCP
coefficient is demonstrated in

Contrast = Wpep * Contrastocp. 7)

The contrast measurement values of different underwater images
before and after enhancement are shown in Fig. 5. The used image
enhancement algorithm [48] can well eliminate the influence of un-
derwater scattering. As visible, the enhanced underwater image has
better contrast than the original image. For underwater images with
different qualities, the better the image quality, the greater the contrast
measurement score and the better the discrimination. Specifically, in
Fig. 5, the MOS values of the original images (a)-(b) are 0.4 and 0.2, re-
spectively. Before DCP weighting, their contrast values are 0.0686 and
0.0719, respectively. The contrast measure without DCP weighting has
unconspicuous discrimination. After DCP weighting, the contrast values
update to 0.0497 and 0.0336, respectively. For these two underwater
images with different MOSs, the discriminability of the weighted con-
trast measure is improved, which is closer to the real quality difference.
This also illustrates the effectiveness of our DCP weighting design.
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(a) (b)

(c) (d)

Fig. 4. In (a)-(d), the first row is the underwater images of different quality, and the second row is the corresponding DCP map [50].

Contrast=0.0497
(a)

Contrast=0.0465

Contrast=0.0603
(c)

Fig. 5. (a)-(b) Original underwater images. (c)-(d) Underwater images enhanced
by [48].

3.3. Sharpness measure

In the influence of the underwater scattering effect, forward scat-
tering makes the underwater image severely blurred, thereby reducing
the clarity of the image and losing some details and edges of the image.
Therefore, sharpness describes changes in the details of the image,
which is a more important parameter in the evaluation of underwater
image quality. Similar to [51], the enhancement measure estimation
(EME) measure is used to measure the sharpness of the grayscale edge
map, which is defined as:

3

Sharpness = Z A EM E(grayscale edge,), (€)]
c=1
2 & & Imax k.l
EME = — log(———=) (C))
klkZ ; ;; Imin,k,l

where the underwater image is divided into k;k, blocks, (I, s.)/
(Iyiny,) represents the relative contrast of each block, and the EME
measures in the three components of RGB color are linearly combined
with its corresponding coefficient 4., ip = 0.299, i; = 0.587, and
Ag = 0.114 are used in conjunction with the relative visual response
of the red, green and blue channels.

Sharpness=4.3118 Sharpness=1.7568
(c) (d)

Fig. 6. (a)-(b) Original underwater images. (c)-(d) Underwater images enhanced
by [48].

We compare the sharpness measurement of different underwater
images before and after enhancement in Fig. 6. As can be seen from
Fig. 6, the enhanced underwater image has better clarity than the
original image, and the enhanced image obtain a larger sharpness score.

3.4. FDUM measure

Underwater images are affected by absorption and scattering in the
underwater environment, resulting in different image qualities. Fur-
thermore, the underwater image can be modeled as a linear correlation
between the absorption and scattering parts, where the absorption
effect corresponds to colorfulness part, the backward scattering cor-
responds to the contrast part, and the forward scattering corresponds
to the sharpness part. Therefore, the colorfulness, contrast, and the
sharpness measures are fused by weighted summation to obtain the
final FDUM metric. The formula is as follows:

FDUM = w; X Color fulness + w, X Contrast + w3 X Sharpness,

(10
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Fig. 7. Visual examples in different MOS groups in the UWIQA dataset.

Table 1
Distribution of observers.
Attributes Number
Male 11
Gender Female 10
Age range 18-25 15
8¢ Tang 25-30 6

where ®;, w, and @; are the weighted coefficients corresponding to
the colorfulness, contrast, and sharpness measurements, respectively.
In our method, we use the multiple linear regression (MLR) to obtain
the coefficients, which is fixed as [0.2982, 0.4439, 0.028].

4. The UWIQA dataset

Existing underwater image quality evaluation methods only conduct
performance testing on a small number of underwater images. The
finite underwater image quality evaluation benchmark dataset limits
the development of this direction to a certain extent, especially for
the deep learning based methods. Based on this, we annotate a large-
scale underwater image quality evaluation benchmark dataset, named
UWIQA dataset, which lays the data basis for subsequent algorithm
research and performance evaluation. Specifically, we directly use
Underwater Image Enhancement Benchmark (UIEB) [9] including 890
underwater images as our original images, and obtain the mean opinion
score (MOS) for each image as the ground truth quality value. In order
to obtain a more reasonable and effective MOS, we invited 21 observers
to rate the quality of the underwater image dataset, where the observers
include different professional backgrounds, different age ranges, differ-
ent genders, and so on. In Table 1, we show the distribution statistics
of all observers. The ratio of male to female is close to 1:1, and the age
of observers is mainly concentrated in the people of 18-25 years old
with relevant professional backgrounds.

In order to reduce the evaluation differences caused by different
display devices, the evaluation process uses a unified high-definition
device to display, and restricts the observer to look at the screen at
eye level, as far as possible to avoid the impact of different external
factors. In order to avoid the randomness of the evaluation process, the
observers were required to perform three-times evaluations. The images
were displayed from the beginning at the first time, but the observer
does not need to score, only to get an overall understanding of the
whole dataset. At the second and third times, the observer was asked

250

200

150
100
o et 2 B e
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Underwater Image Quality Value

Sample Number

Fig. 8. MOS distribution statistics of the UWIQA dataset.

to rate each image in the dataset, with scores from 1 to 5 containing 5
integer score levels, respectively corresponding to the poor quality to
the good quality. Finally, the average value of the two evaluations was
taken as the original score of the observer.

After obtaining the original scores of all reviewers, we need to clean
the data. First, in order to ensure the validity of the scoring data, the
outlier data needs to be deleted based on the review average of all
reviewers. During this process, seven evaluation results were discarded
because the large differences with others. Then, the effective scores are
averaged and mapped to a total of 10 score levels from 0.1 to 1 to
obtain the final MOS (i.e., ground truth quality score) of each image.
Fig. 7 provides some visual examples in different MOS groups of the
UWIQA dataset. From it, we can see that the underwater image quality
in each group has a higher consistency.

In Fig. 8, we provide the MOS distribution statistics of the UWIQA
dataset. In this dataset, the number of images with a MOS score of
0.5 is the largest, accounting for 26.4% of the overall, followed by
images with a MOS score of 0.4, accounting for 24.7%. By contrast,
good quality images (MOS scores over 0.7) only account for 6.1%. The
average MOS score of this dataset is 0.499.

5. Experiments
In this section, the experiments on the UWIQA dataset are classified

into two parts. The first part is the objective quantitative performance
evaluation, including the comparisons between objective evaluation
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Table 2 Table 3
Quantitative results of different methods on the UWIQA dataset. Quantitative results of intra-group consistency.
PRCC KRCC SRCC MAE RMSE
FDUM 0.638 0.530 0.683 FDUM 0.037 0.051
UIQM [45] 0.608 0.473 0.618 UIQM [45] 0.077 0.105
UCIQE [46] 0.595 0.474 0.622 UCIQE [46] 0.082 0.108
CCF [47] 0.409 0.351 0.479 CCF [47] 0.094 0.115
CODE [7] 0.545 0.435 0.575
EMBM [8] 0.161 0.073 0.100
Table 4
Quantitative results of different enhancement methods.
12 Target Metric Imagel Image2 Image3 Image4
GJ
2 1 UIQM 0.653 0.796 1.169 1.747
i> . Original image UCIQE 0.423 0.503 0.520 0.534
5 08 s 8 CCF 8.055 22.433 20.238 48.680
g FDUM 0.124 0.253 0.356 0.623
[
‘éf’ 0.6 UIOM 0.957 1.023 1.485 1.977
= . UCIQE 0.537 0.652 0.599 0.572
h 52
£ 04 Chiang [52] CCF 26.230 58.837 40.244 71.512
g FDUM 0.252 0.451 0.569 0.811
© 0.2
5 UIQM 1.106 1.004 1.454 1.862
. UCIQE 0.596 0.652 0.600 0.588
0
01 02 03 04 05 06 07 08 09 10 Ancuti [48] CCF 14.247 35.164 28.525 50.284
Intra-group FDUM 0.303 0.475 0.593 0.850

—FDUM ulQM —UCIQE CCF —MOs

Fig. 9. The curves of the intra-group consistency.

results obtained by different methods and MOS, and the intra-group
consistency comparisons. The second part is used to evaluate the ef-
fectiveness by comparing different enhancement methods. The experi-
ments are conducted on 1.6 GHz frequency Intel i5 CPU and 8 GB of
RAM using Matlab 2017a, and the average running time for one image
is 3.85 s.

5.1. Objective quantitative performance evaluation

For the quantitative evaluation, the Pearson Product-moment Corre-
lation Coefficient (PRCC), Kendall Rank Correlation Coefficient
(KRCC), and Spearman Rank Correlation Coefficient (SRCC) are used to
evaluate the correlation between the predicted quality score and MOS.
PRCC measures the linear correlation between the evaluation score and
MOS, with values ranging between —1 and 1. KRCC and SRCC compare
rank correlation between evaluation score and MOS.

For comparison, five types of image quality assessment are intro-
duced. Among them, there are three underwater IQA methods (ie.,
UIQM [45], UCIQE [46], and CCF [47]), and two in-air IQA methods
(ie., CODE [7] and EMBM [8]). Table 2 provides the quantitative
results of different methods on the UWIQA dataset. Compared with
other methods, our proposed FDUM metric achieves the best perfor-
mance in terms of the PRCC, KRCC, and SRCC. To be specific, when
compared with the underwater IQA methods, the SRCC metric of our
proposed method reaches 0.683, which has the percentage gain of
10% against the UIQM method, 9.8% against the UCIQE method, and
42.6% against the CCF method. Similarly, compared with the second
best method, our FDUM achieves the minimum percentage gain of
11.8% in terms of KRCC, and 4.9% in terms of PRCC. It is clear that
compared with the existing underwater IQA methods, our method has
a stronger correlation with the subjective assessment of MOS. When
compared with the CODE method [7] for in-air image, the proposed
FDUM method achieves the minimum percentage gain of 17.1% in
terms of PRCC, 21.8% in terms of KRCC, and 18.8% in terms of SRCC.
Obviously, it is necessary to design an IQA method specifically for
underwater images.

When evaluating the performance, the PRCC, KRCC, and SRCC
directly calculate the correlation between the prediction and the MOS,
which are the global measurements. In fact, in the UWIQA dataset, each

MOS group contains many underwater images, and the underwater
images in each MOS group have the same MOS value and similar visual
quality. A good underwater IQA algorithm should make the IQA score
in each MOS group closer and close to the MOS score of the group,
which we call it as intra-group consistency. The purpose of analyzing
the intra-group consistency is to investigate whether the algorithm has
good consistency evaluation results for underwater images in the same
MOS group. First, we use different algorithms obtain the evaluation
scores in each MOS group. Then, in each group, we calculate the
mean value of all samples in this group and normalize the average
values into [0.1, 1], generating the final quality score of each group.
Finally, based on the above-mentioned the final quality score of each
group, we draw the intra-group consistency curves, where the X axis
represents the real MOS of each group, and the Y axis represents the
final quality score of each group. Ideally, the black curve in Fig. 9
is the real intra-group consistency curve, and the closer to the black
curve, the better the performance. Compared with other methods, from
an intuitive point of view, our FDUM curve (the red curve) is closer
to the MOS curve (the black curve). For the quantitative evaluation,
we list the Mean Absolute Error (MAE) and Root Mean Squared Error
(RMSE) in Table 3. We can draw a conclusion consistent with Fig. 9.
Our FDUM method achieves the smallest error against other method in
all indexes. Specifically, for the MAE score, our method reaches 0.037,
which reduces the error by 4% compared to the second best algorithm
(ie., UIQM). Compared to the second best algorithm (i.e., UIQM), the
RMSE score of our method is reduced by 5.4%. All these measurements
demonstrate the superior performance of our method in terms of the
overall accuracy and intra-group consistency.

5.2. Image enhancement performance evaluation

In order to improve the quality of underwater image in different
aspects, many underwater image enhancement algorithms were pro-
posed. In this subsection, we test the effectiveness of different IQA
methods for different enhancement methods. Two underwater image
enhancement algorithms are used for comparisons: Ancuti et al. [48]
proposed underwater video image enhancement method based on fu-
sion principle. John et al. [52] proposed an enhancement algorithm
combining techniques of (WCID). A group of underwater degraded
images and corresponding enhanced results are shown in the Fig. 10.
It is not difficult to see that the image enhancement method proposed
in [48] achieves better visualization result. For each image in Fig. 10,
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Fig. 10. (a) Original underwater images. (b) Underwater images enhanced by [52]. (¢) Underwater images enhanced by [48].

we use different underwater IQA methods to evaluate them, and the
objective evaluation scores are listed in Table 4. From the top to
bottom, the MOSs of the original images are 0.1, 0.3, 0.4, and 0.6,
respectively. Comparing the results shown in the first row block in
Table 4, the quality score of our method is closer to the MOS than
others. For the same underwater IQA metric, our method can obtain
the same quantitative result as the subjective visual experience, that is
to say, the method of [48] achieves the best enhancement effect among
the two methods. But for other quality measures, this conclusion does
not always hold. For example, for the second image, the CCF metric
demonstrates the method of [52] has the best performance, but this is
obviously inconsistent with our visual perception mechanism. Likewise,
for the fourth image, the UIQM also indicates the best performance of
method [52]. To sum up, for the underwater image enhancement task,
our proposed metric is more in line with the human visual perception
mechanism, and is more robust and stable.

6. Conclusion

In this paper, a new underwater image quality assessment metric
without reference is proposed, named FDUM. This method combines
spatial domain and frequency domain in colorfulness metric, and re-
fines the contrast metric by using the dark channel prior. The final
evaluation measurement of FDUM are obtained by combining the col-
orfulness, contrast, and sharpness. In addition, an Underwater Image

Quality Assessment (UWIQA) dataset is constructed to bridge the gap
between the algorithm design and data validation. Comprehensive ex-
periments, including the comparisons with the state-of-the-art method,
intra-group consistency analysis, and the quantitative validation of
different enhancement methods, are conducted, demonstrating that our
method can achieve significant performance improvements and more
consistent visual perception.
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