
222 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 14, NO. 1, JANUARY 2020

OIDC-Net: Omnidirectional Image Distortion
Correction via Coarse-to-Fine Region Attention

Kang Liao , Chunyu Lin , Yao Zhao , Senior Member, IEEE, Moncef Gabbouj , Fellow, IEEE, and Yang Zheng

Abstract—Omnidirectional cameras have recently received sig-
nificant attention in panoramic imaging systems such as virtual
reality (VR) technology; however, the strong geometric distortion in
omnidirectional images severely affects the object recognition and
semantic understanding. In this paper, we propose an automatic
omnidirectional image distortion correction approach powered by
a unified learning model (OIDC-Net). This approach is applicable
for almost all types of omnidirectional cameras, requiring nothing
more than a distorted image. A crucial and challenging ingredient
for reconstructing the real physical scene is to estimate the hetero-
geneous distortion coefficients in an appropriate camera model.
To address this issue, we present a novel coarse-to-fine region
attention mechanism to alleviate the difficulty of predicting all
coefficients simultaneously. With the proposed cascade structure
and deep fusion strategy, the ambiguous relationship among these
heterogeneous distortion coefficients has been incrementally per-
ceived. Our experimental results show significant improvement
over the state-of-the-art methods in terms of visual appearance,
while maintaining a promising quantitative performance.

Index Terms—Omnidirectional image distortion correction,
coarse-to-fine region attention, Incremental perception.

I. INTRODUCTION

OMNIDIRECTIONAL cameras have been recently incor-
porated into the computer vision and robotics fields. The

main types of omnidirectional cameras can be classified into two
categories: catadioptric cameras and fisheye cameras. Compared
with the view-limited conventional camera, the omnidirectional
camera provides a more enhanced field of view (FOV), which has
gained popularity and has been increasingly used for ego-motion
estimations [1], [2], intelligent vehicles [3], [4], and panoramic
displays [5], [6]. However, owing to the specific design of
such structures, strong geometric distortions [7] that occur in
omnidirectional images hinder the understanding of the real
physical scene.
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Image distortion correction is generally the first step in
structure from motion (SfM) and simultaneous localization and
mapping (SLAM) techniques, and thus the results of the distor-
tion correction directly determine the performance of the entire
pipeline. For the purpose of recovering the real physical scene,
traditional methods for the distortion correction mainly focus
on hand-crafted feature detection, as well as the estimation and
optimization of the distortion coefficients. In [9]–[11], and [12],
the line-based algorithm is leveraged for the catadioptric camera
calibration, and all of the distortion coefficients are obtained
using only the line scenes. In [13]–[15], and [16], the proposed
methods require multiple views of planar calibration patterns
that have metric-known points, corners, or any features that
could be easily detected. Other prevalent correction approaches
are based on self-calibration [17]–[19], and [20], which handle
a sequence of different views to calculate intrinsic parameters of
the camera, without requiring knowledge of the 3D location of
the feature points. However, all of the aforementioned methods
demand specific physical objects or scenes so that they cannot
flexibly perform for any single omnidirectional image.

Over the past few years, deep learning has begun to out-
perform traditional methods in computer vision, particularly in
object detection [21], [22], pose estimation [23], [24], and image
super-resolution [25], [26]. However, to our knowledge, little
attention has been paid to correct distortion in images using con-
volutional neural networks (CNNs). As a pioneering study, radial
distortion correction is addressed in [27], where a learning struc-
ture is trained using synthesized radial distorted images when
applying the one-parameter division model proposed in [28].
Yin et al. [29] propose a multiple context collaborative network
for fisheye image rectification. To avoid the imbalanced problem
during the training process of the heterogeneous distortion co-
efficient estimation, the image reconstruction loss is optimized
rather than the regression loss, while these intrinsic parameters
are essential for the camera calibration and SfM. In addition, it
is more challenging to apply this approach to all omnidirectional
images, such as images obtained from catadioptric cameras.

A further major disadvantage of the aforementioned learning-
based methods is that they ignore some basic but vital prior
knowledge with respect to distorted images. For instance, the
distortion degree exponentially increases when a pixel is farther
away from the distortion center, and the distortion center shift is
close to the ideal optical center within a certain range, instead of
being randomly perturbed on the global distribution. This moti-
vates an investigation into the pipeline of the distortion correc-
tion, guided by the prior knowledge of the attention mechanism.
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Fig. 1. OIDC-Net helps the object detection and semantic segmentation.
Top to bottom: original omnidirectional images, Mask R-CNN [8] detections
and segmentations on the omnidirectional images, our corrected images, and
detections and segmentations on the corrected images. Our method is able to
correct the distortion in any scenario, requiring only an omnidirectional image.

In retrospect of previous works, there is still room for im-
provement when it comes to correct the distortion in a single
omnidirectional image. This problem could be potentially mit-
igated if we are able to present a unified learning structure for
omnidirectional cameras, both catadioptric and fisheye cameras.
In this paper, we propose an omnidirectional distortion correc-
tion network (OIDC-Net) that learns the distortion information
and estimates the distortion coefficients in an omnidirectional
image, guided by the coarse-to-fine region attention mechanism.
As shown in Fig. 1, the proposed OIDC-Net can recover the real
geometric distribution and thus benefits the scene understand-
ing tasks such as object detection and semantic segmentation.
Specifically, OIDC-Net includes a distortion center network
(DC-Net) and distortion parameter network (DP-Net), which
predict the distortion center and distortion parameters of omni-
directional images, respectively. The overall model architecture
is depicted in Fig. 2. On the one hand, DC-Net estimates the
accurate location of the distortion center with the coarse region
attention, which guides the network to learn location information
from reasonable areas. On the other hand, DP-Net uses the
attentive aggregation as input, which is generated from the
fusion module, and contains the original content and geomet-
ric distortion features encoded by the prior knowledge of the
omnidirectional distortion. Subsequently, a cascade structure
incrementally perceives different kinds of distortion features and
roughly classifies the range of each distortion parameter, with the
fine region attention. Then the deep fusion strategy is utilized to
hierarchically fuse the distortion features and further perceive
the ambiguous relationship among the distortion parameters.

Finally, DP-Net accurately predicts the deviations of all of the
distortion parameters, and therefore we correct the distortion
in an omnidirectional image using these estimated distortion
coefficients. By separating the estimation of the heterogeneous
distortion coefficients into two specific networks, our method
can effectively avoid the imbalanced problem during the training
process. Experimental results show that OIDC-Net significantly
outperfroms the state-of-the-art methods, both the visual ap-
perance of corrected omnidirectional images and quantitative
performance.

In summary, the main contributions of this paper are
three-fold:
� We present a unified and flexible learning framework for

the omnidirectional distortion correction in any scenario,
requiring only an image.

� We describe a novel coarse-to-fine region attention mech-
anism that aims to implicitly exploit the prior knowledge
with regard to the distortion characteristics.

� We introduce a cascade structure and deep fusion strat-
egy to incrementally perceive the ambiguous relationship
among heterogeneous distortion coefficients.

The rest of this paper is organized as follows. We first in-
troduce the related works in Section II. We then establish the
unified omnidirectional camera model and dataset, and present
the proposed OIDC-Net framework in Sections III and IV,
respectively. The experiments and discussions are provided in
Section V. Finally, we conclude this paper in Section VI.

II. RELATED WORK

Distortion correction in terms of the traditional and learning-
based methods is addressed in this work. Previous published
works have mainly focused on the traditional and learning-based
distortion corrections. We also discuss the generalized paramet-
ric model for omnidirectional cameras.

A. Traditional Distorted Images Correction

A universal distortion correction standard was provided by
F. Devernay et al. [30], which states that a straight line must ap-
pear straight in an image. Previous classical distortion correction
methods [13], [31], [32] are based on a calibration chessboard,
and apply a planar calibration chessboard captured in multi-view
images. Although such methods work well from sufficient priors,
they are expected to perform poorly under limited conditions.
Wei et al. [33] and Carroll et al. [34] required manual marking
from users, such as picking out a certain number of curves that
are supposed to be straight lines in the real world. However,
these additional requirements make it difficult to correct a single
distorted image automatically and flexibly. To extend the appli-
cation scenarios, Bukhari et al. [35] proposed an automatic radial
removal method, which works from a single distorted image
and estimates circular arcs based on the one-parameter division
distortion model presented by Fitzgibbon [36]. Santanacedrés
et al. [37] improved on the work in [28], and proposed a scheme
for automatic distortion correction using a two-parameter radial
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Fig. 2. Overview of the learning model architecture. OIDC-Net consists of two networks, namely, a distortion center network (DC-Net) and distortion parameter
network (DP-Net). DC-Net takes an omnidirectional image and a coarse region mask as inputs, and outputs the predicted distortion center. Subsequently, the
distortion center is exploited to construct a fine region mask based on the prior knowledge of the geometric distortion, which is further combined with the original
omnidirectional features using a fusion module to generate an attentive aggregation. DP-Net consists of an incrementally perceived cascade structure and finally
outputs the estimated distortion parameters using a deep fusion module.

distortion model with an iterative optimization algorithm. How-
ever, these three automatic methods are conventionally time-
consuming due to a heavy dependence on hand-crafted feature
detection and optimization, and provide inaccurate results when
wrong arcs or lines are detected. All of the aforementioned
approaches exploit hand-crafted features from images to correct
the distortion; therefore, the process of hand-crafted feature
detection and optimization is highly sensitive with regard to the
final performance.

B. Learning-Based Distorted Images Correction

The learning-based method for distortion correction has re-
cently been studied. Rong et al. [28] first implemented CNNs
that aim to recover the real physical scene from the radial
distortion. More specifically, the authors mapped a fixed range
of distortion parameters into discrete integers with the intention
of classifying the distorted images using neural networks. How-
ever, as the distortion model is relatively simple and only consists
of one parameter, and a given assumption of the distortion center
is known, this method performs poorly in certain sophisticated
models, such as the omnidirectional camera model. Further-
more, CNNs occlude the classification ability using an image
without any geometric and semantic features. To address these
problems, Yin et al. [29] introduced a semantic segmentation
network to guide the distortion estimation of fisheye images.
They trained a multi-context collaborative deep network, namely
FishEyeRecNet, using a synthetic dataset built upon the fisheye
camera model. Instead of directly minmizing the regression
loss, they minimized the image reconstruction loss to estimate
the heterogeneous distortion coefficients. While this proposed
network outperforms the state-of-the-art methods by remarkable
margins, FishEyeRecNet cannot be trained without geometric
and semantic information derived from undistorted and scene

parsing images, respectively, thus imposing increased memory
and efficiency burdens on the model. Moreover, it is more
challenging to extend FishEyeRecNet to other omnidirectional
cameras, such as catadioptric cameras.

C. Generalized Parametric Model for Omnidirectional
Cameras

Geyer et al. [38] proposed a sphere model as the unified
model that is applicable to any central catadioptric system. Ying
et al. [39] directly leveraged the calibration methods for cata-
dioptric cameras to fisheye cameras in terms of their presented
unified imaging model. The general model for catadioptric cam-
eras using a spherical projection is equivalent to pinhole-based
models, as demonstrated by Courbon et al. [40], so that it can be
directly exploited to fisheye cameras. Ramalingam et al. [41]
employed a unified non-parametric camera model that asso-
ciates one projection ray to each pixel. The imaging function
of the omnidirectional camera model is described by a Taylor
series expansion in Scaramuzza et al. [42], and the distortion
coefficients were estimated using a four-step least-squares linear
minimization algorithm. It is highly desirable that this method
dispenses with any special models of the omnidirectional cam-
eras and a priori knowledge of extrinsic parameters. In this
work, we train the proposed network and estimate the distortion
coefficients based on this unified omnidirectional camera model,
by taking the generalization and flexibility of correction system
into account.

III. OMNIDIRECTIONAL CAMERA MODEL AND IMAGE

DATASET ESTABLISHMENT

Generally speaking, the training of a neural network with
massive and standard datasets is inevitable for its learning abil-
ity. Nevertheless, a real omnidirectional image dataset requires
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enormous labeling work, and the ground truth of the distortion
coefficients rely heavily on the calibration process. Owing to
the limitations of the utilized acquisition devices, the demand
for a dataset containing a wide range of heterogeneous distortion
coefficients is difficult to obtain. To this end, building a complete
omnidirectional image dataset that is captured using various
omnidirectional sensors and provides neural networks learning,
is essentially unachievable.

Based on the previous discussion, we construct a synthesized
omnidirectional image dataset with the ground truth of the
distortion coefficients and matched real images with respect to
the unified omnidirectional camera model.

A. Unified Omnidirectional Camera Model

We initially assume that a point x = [x, y]T in the camera
plane corresponds to a scene point X of an incident ray r. The
relationship between x and X is given by

r = h(x) = PX, (1)

where h is the image projection non-linear function; X ∈ R4 is
the homogeneous coordinates in the scenes; and P ∈ R3×4 is a
perspective projection matrix. The projection function h has the
following expression:

h(x, y) = (x, y, f(x, y))T, (2)

where f is a Taylor series expansion that is defined as

f(x, y) = k0 + k1r + k2r
2 + · · ·+ kNrN . (3)

Here {k0, k1, k2, . . . , kN} are the distortion parameters in the
omnidirectional camera model and r is the distance between the
point and distortion center, c. If we assume that the coordinates
of the distortion center is [xc, yc]

T, then r can be obtained using
the following expression:

r =
√

(x− xc)2 + (y − yc)2. (4)

As suggested in [42], for catadioptric and fisheye cameras,
the function f always satisfies the following condition:

df

dr

∣
∣∣∣
r=0

= 0. (5)

Thus, k1 equals 0 and the distortion parameters are simplified
to {k0, k2, . . . , kN} in the omnidirectional camera model, and
Eq. (3) can be rewritten as

f(x, y) = k0 + k2r
2 + · · ·+ kNrN . (6)

Finally, the distortion coefficients {xc, yc, k0, k2, . . . , kN} are
used to construct the intrinsic parameters of the unified omnidi-
rectional camera model, which should be accurately estimated
for the distortion correction.

B. Omnidirectional Image Dataset Generation

We generate an omnidirectional image dataset of various
distortion coefficients using the introduced unified model. The
distortion coefficients consists of a series of distortion parame-
ters and a distortion center, as described below.

Distortion Parameters Variety: The distortion parameters de-
note the distortion degree of the entire image. In this regard, the
larger the distortion parameter values, the stronger the image
distortion. As different distortion parameters have different mag-
nitudes, the loss function unfairly treats each parameter during
the training process. Therefore, we normalize the magnitude
of all of the distortion parameters and exploit these values as
labels of the omnidirectional images after the synthetic image
generations.

Distortion Center Perturbation: In contrast, the location of the
distortion center determines the distortion distribution in an om-
nidirectional image. The closer the pixels to the distortion center,
the smaller the distortion, and vice versa. To produce different
distortion centers in an omnidirectional image, we select the
center of an image as the initial distortion center co = [xo, yo]

T,
and this center is then randomly perturbed by values within the
range (−α, α). Finally, we obtain the target distortion center
c = [xo + a, yo + b]T, where a and b ∈ (−α, α).

IV. OMNIDIRECTIONAL DISTORTION CORRECTION

NETWORK (OIDC-NET)

In this section we describe the full method for learning
distortion information from an omnidirectional image. We first
introduce a baseline that directly estimates the heterogeneous
distortion coefficients of the unified omnidirectional camera
model proposed in Section III. We then present the details of
DC-Net and DP-Net, which exploit the coarse-to-fine region
attention mechanism with respect to the crucial prior knowledge.
Finally, the loss functions of each component in OIDC-Net are
proposed. The overview of OIDC-Net is illustrated in Fig. 2.

A. Baseline

First, we design a vanilla version of OIDC-Net as the baseline,
which takes an omnidirectional image as the input and estimates
all of the heterogeneous distortion coefficients. This structure
can be divided into two sub-networks: backbone and header.
Specifically, the backbone network is exploited to extract the
high-level and distortion features from the input omnidirectional
image. On the other hand, the header network that contains three
fully connected layers is exploited to predict all of the hetero-
geneous distortion coefficients simultaneously. The number of
units for these three layers are: 1024, 512, and n, where n is the
number of distortion coefficients in the unfied omnidirectional
camera model discussed in Section III-A. The activation func-
tions for the first two fully connected layers are RELUs, while
the last fully connected layer implements the linear function as
the activation function.

The baseline directly estimates all of the distortion coeffi-
cients using an omnidirectional image, however a challenging
problem remains due to the heterogeneous attributes of the
distortion coefficients. To be more specific, the distortion co-
efficients contain a distortion center, c, and a series of distortion
parameters, {k0, k2, . . . , kN}, which indicate the distribution
and degree of the distortion in an omnidirectional image, respec-
tively. Moreover, the range and magnitude of these two types
of distortion coefficients differ greatly. In this regard, finding a

Authorized licensed use limited to: Beijing Jiaotong University. Downloaded on October 15,2020 at 13:53:19 UTC from IEEE Xplore.  Restrictions apply. 



226 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 14, NO. 1, JANUARY 2020

balance between the distortion center and distortion parameters
during the training process is quite challenging. Consequently,
based on the divide-and-conquer algorithm, we redesign the
architecture of the baseline and propose the OIDC-Net that
consists of two special networks as described below.

B. Distortion Center Network

To accurately estimate the location of the distortion center in
an omnidirectional image, we propose a DC-Net that utilizes
the coarse region attention mechanism. We further construct a
three-region geometric mask in terms of the fine region attention
mechanism and generate the attentive aggregation contained in
the original content and geometric distortion features.

Coarse region attention mechanism: In contrast to the general
prediction task, which requires neural networks to search for an
optimal solution in the global distribution, we propose a coarse
region attention mechanism in the distortion center estimation
task. Typically an ideal optical center locates the center of a
lens. However, due to inaccurate manufacturing processes and
the influence of external factors, a shift in the optical center exists
in most lenses. The shift occurs around the ideal optical center
within a certain range, instead of being randomly perturbed
in the global distribution. This motivated the work here, to
guide the neural networks to focus on a reasonable area in the
omnidirectional images. More specifically, we construct a binary
dense mask that contains the available region around an ideal
optical center. We will compare the performance of the DC-Net
both with and without the coarse region attention mechanism in
Section V-B.

There are two options for the design of DC-Net. The first op-
tion is a regression-based model, which regresses the coordinate
value of the distortion center in an omnidirectional image. Since
the shift value is minor and the range is limited, we propose a
classification-based model as the second option. As discussed
in Section III-B, the shift value of distortion center c belongs to
the range [−a, a]× [−b, b], which forms a rectangular area, Q.
We assume that the metric of the shift value is at the pixel-level
so that Q includes (2a+ 1)× (2b+ 1) pixels in total. Finally,
our goal is to classify an omnidirectional image into the cate-
gory clsk from the set {clsk = (2a+ 1)i+ j | 0 ≤ i ≤ 2a, 1 ≤
j ≤ (2b+ 1), k = (2a+ 1)i+ j}. Experimental results show
that the classification-based model significantly outperforms
the regression-based model, and the relevant experiments and
explanations will be presented in Section V-B.

DC-Net uses an omnidirectional image and a coarse region
mask as the inputs, then predicts the location of the distortion
center. The network uses 3 × 3 convolutional blocks, and all
of the activation functions for each layer are ReLUs except
for the last fully connected layer that leverages the softmax
function (classification-based model). In more detail, we use
eight convolutional layers with a maxpooling layer (2 × 2,
stride 2) after every two convolutions. The eight convolutional
layers have the following number of filters per layer: 64, 64,
128, 128, 256, 256, 256, and 256. At the end of the network,
the last convolutional layer is followed by three fully connected
layers, which contain the following number of units per layer:

1024, 512, andm, wherem indicates the category number of the
distortion center in an omnidirectional image. Fig. 2 illustrates
the complete network architecture of DC-Net.

Fine region attention mechanism: As mentioned in Sec-
tion III-B, the distribution of the distortion relies on the location
of the distortion center in an omnidirectional image. To make
full use of this prior knowledge, we structure a three-region
geometric mask based on the predicted location of the distortion
center. As shown in Fig. 2, different regions represent different
degrees of distortion based on the characteristic of the distortion
distribution. These three regions can be structured as:

v(x, y) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

a0, x = xc, y = yc.

b0, 0 < u′(x, y) ≤ r1.

c0, r1 < u′(x, y) ≤ r2.

d0, r2 < u′(x, y), u′′(x, y) ≤ r3.

(7)

where v(x, y) is the gray value of a pixel p = [x, y]T in the
three-region geometric mask, and the size of this mask is the
same as that of the original omnidirectional image. In Eq. (7),
there are four hyperparameters: a0, b0, c0, and d0, and different
gray values express different degrees of distortion in an om-
nidirectional image. Specifically, a0 is the value of the pixel
located at the distortion center c = [xc, yc]

T. The remaining
hyperparameters b0, c0, and d0 are the gray values of pixels in
the three refine regions, where each region represent one specific

degree of distortion. In addition, u′ =
√

(x− xc)
2 + (y − yc)

2

is the Euclidean distance between a pixel p and the distortion

center c. In a same manner, u′′ =
√

(x− xo)
2 + (y − yo)

2 is
the Euclidean distance between a pixel p and the original center
of an omnidirectional image o = (xo, yo)

T. Moreover, r1, r2,
and r3 denote the range of the corresponding fine regions. Details
regarding the value definition of these hyperparameters will be
described in Section V-B.

Attentive aggregation: To further provide more geometric
features regarding the distortion for neural networks, we com-
bine the original omnidirectional image with the three-region
geometric mask using a fusion module. Specifically, this fusion
module is quite lightweight, and is only comprised of one
convolutional layer with a 1 × 1 convolutional block with a
filter number of three. Compared with the DC-Net, the activation
function for this convolutional layer is Tanh. As a result, the
attentive aggregation includes the original content information
as well as the geometric distortion information, making the
DP-Net attentively perceive the effective features with regard
to the distortion.

Instead of utilizing the location of the distortion center in a
direct way, we implicitly structure an attentive aggregation and
exploit the attention mechanism to conduct the perception of
networks. As a benefit of this combination, our model makes
full use of the comprehensive features, both the content and
geometry, significantly outperforming methods that omit this
potential prior distortion knowledge. The relevant experiments
are described in Section V-B.
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Fig. 3. Network architecture of the DP-Net. The DP-Net consists of a cascade
structure that incrementally perceives the distortion features. At the end of this
structure, a deep fusion module is implemented to hierarchically fuse all of
distortion features.

C. Distortion Parameter Network

In the subsequent part of the OIDC-Net, the DP-Net uses
the attentive aggregation as input, and estimates the distortion
parameters of the omnidirectional image. The architecture of
the DP-Net is illustrated in Fig. 3 and we show four parameter
estimation modules.

Incrementally perceived cascade structure In analogy to the
DC-Net, there are two options for the architecture of DP-Net, i.e.,
the regression-based and classification-based methods. How-
ever, the range of the distortion parameters is much wider
than that of the distortion center, and it is tough to reasonably
discrete their various values to different categories. Therefore,
the classification-based method sufferes from inaccurate estima-
tions on the large amount but slight difference data distribution.
In contrast to the classification-based method, the regression-
based method accurately learns a mapping relationship between
the extracted features and the labels of ground truth. While
this method performs poorly on a sparse and imbalanced data
distribution, which provides a smooth estimation around the
most frequent distortion parameters. With the accuracy and
robustness in mind, we combine these two methods into a
cascade way, effectively eliminating their specific shortcomings
and incrementally perceiving the different distortion features.

First, the proposed structure roughly classifies the reasonable
range of the distortion parameters, and then accurately predicts
the deviation of each distortion parameter using the classified
features. To be more specific, the range of distortion parameters
is discreted to K categories with the quantization step I , so that
the deviation of each distortion parameter belongs to the range of
(0, I). DP-Net comprises of N parameter-specific networks that
estimate the corresponding distortion parameters, respectively.
The structure of each network is similar to that of the baseline,
and the difference between these two network versions is the
number of units in the last fully connected layer, which is
assigned the number of categories K. All of the backbone
networks of these paramerer-specific networks share weights
with each other.

Deep fusion strategy: The prediction of the distortion co-
efficients in an omnidirectional image is extremely challeng-
ing using neural networks, as the distortion degree of every
region depends on the associated influence of all distortion
coefficients. Furthermore, the ambiguous relationship among
different parameters leads to difficulties in balancing the bias of
each estimation of the network. To address the aforementioned
problems, we further explore the mechanism of the parametric
omnidirectional model. Based on previous works [43]–[45], we
implement three different fusion strategies: early, late, and deep
fusion.

We first denote all of the distortion features by
{fk0

, fk2
, . . . , fkN

} and suppose the fusion module has M
layers in which each layer is denoted by {Li|i = 1, 2, . . . ,M}.
The early fusion strategy concatenates all of the distortion
features at the beginning of the module, then we feed this
combination into a series of abstract units to sequentially
perceive the integrated features. Finally, a prediction unit,
denoted by P, simultaneously outputs the estimation of all of
the distortion parameters. In brief, the early fusion strategy can
be formalized as follows:

OE = P(LM (LM−1(· · ·L1(fk0
◦ fk2

◦ · · · ◦ fkN
)))), (8)

where ◦ is the operation of concatenation and OE is a N
dimensional vector that includes the predicted deviation values
of each distortion parameter.

The structure of the late fusion module is opposite to that of
the early fusion module, where different branches independently
perceive different distortion features. For a fair comparison,
we suppose the number of abstract units equals that of the
early fusion module in the progressive perceptions, and the
dimensions of all of the units keep the same with that of the early
fusion module. At the end of the abstract units, we concatenate
all of the perceived features and a prediction unit OL outputs
an estimation of the deviation vaules of distortion parameters.

OL = P(Lk0

M (Lk0

M−1(· · ·Lk0
1 (fk0

)))

◦ Lk2

M (Lk2

M−1(· · ·Lk2
1 (fk2

)))

◦ · · · · · ·
◦ LkN

M (LkN

M−1(· · ·LkN
1 (fkN

)))). (9)

It is noteworthy that the early and late fusions both have only
one concatenation of features, which proceed at the beginning
or end of a module. To benefit the neural networks and aid in
the deep learning of the relationship among different distortion
features, we design a multiple continuous perception in terms
of the deep fusion strategy. The integrated distortion feature,
denoted as F, can be expressed by:

F = fk0
� fk2

� · · · � fkN
, (10)

where� is the operation of the element-wise mean. We also adopt
the same setting for the number and dimension of the abstract
units as the early fusion module, and therefore the deep fusion
module is formalized as follows:

OD = P(FM ), (11)
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Fig. 4. Architecture of three types of fusion strategies: early, late, and deep
fusion. The early and late fusions both have only one interactive operation of
different features, which proceed at the beginning or end of a module. In contrast,
the deep fusion has more interactive operations of different features.

where OD is the predicted deviations vector, and FM is an
integrated distortion feature derived by the M -th deep fusion
layer:

FM = Lk0

M (FM−1) � Lk2

M (FM−1)

� · · · � LkN

M (FM−1).
(12)

The detailed architectures of the three fusion strategies are
shown in Fig. 4, where we set M to three and the number of
parameter estimation modules to four.

D. Loss Function

As discussed in Section IV-B, the DC-Net is a classification-
based network that predicts the location of the distortion center
from the reasonable area Q. Based on this, the cross-entropy
loss of the classification result q is used in terms of the estimated
center:

LDC(q, y) =

{
− log(q), if y = 1.

− log(1− q), otherwise.
(13)

Compared to the DC-Net, the DP-Net is an incrementally
perceived cascade network that first classifies the general range
of distortion parameters {k0, k2, . . . , kN}, and then regresses
the precise deviation values of these parameters. Therefore, the
loss function of the DP-Net includes two types of objectives:

LDP (Ĉ, R̂) = Lcls(C, Ĉ) + λLreg(R, R̂), (14)

where Ĉ and R̂ are the estimated category and deviation value
of each distortion parameter, C and R are the ground truth
of these values, respectively. Besides, λ is a factor to balance
the objectives of the classification and regression. Taking the
stability of the traning process into account, we employ the
smooth l1 loss for the regression objective rather than the l2

loss that may lead to the exploded gradients:

Lsm(x) =

{
0.5x2, if |x| ≤ 1.

|x| − 0.5, otherwise.
(15)

Here, x = p− p̂, p is the ground truth of the distortion param-
eters, and p̂ is the estimated distortion parameters using the
DP-Net.

V. EXPERIMENTS

A. Synthetic Omnidirectional Dataset and
Implementation Details

We construct a synthetic omnidirectional dataset derived from
the unified model introduced in Section III-A, the sourced im-
ages are obtained from the oxford buildings dataset [46]. In par-
ticular, there are two heterogeneous distortion coefficients that
need to be estimated for distortion correction, i.e., a distortion
center c and series of distortion parameters {k0, k2, . . . , kN}.
As mentioned earlier, the distortion center randomly distributes
around the initial center within the range (−α, α). Having con-
sidered the size of the synthetic omnidirectional image, we em-
pirically choose the shift value α of the distortion center to 4 so
that its category number m correspondingly becomes 81. On the
other hand, Scaramuzza et al. [42] used a 4th order polynomial
to approximately fit the unified omnidirectional camera model.
The method satisfactorily performed for the camera calibration,
and thus the chosen number of distortion parameters is 4.

We train our learning model on a single NVIDIA GeForce
GTX TITAN X GPU. Concretely, the DC-Net has been trained
using Adam [47] with a base learning rate of 0.0005, which
is decreased by 10 at every 5 k iterations for two steps. For
the architecture of the DP-Net, we leverage InceptionV3 [48]
(without fully connected layers) as the backbone network in
DP-Net, which is pre-trained on ImageNet and fine-tuned on our
synthetic omnidirectional dataset. The DP-Net is sequentially
trained on the classification and regression tasks, with the same
learning rate as that of the DC-Net. Note that the parameters of
the backbone network are freezed during the training process of
the regression task. Afterwards, we jointly train this incremen-
tally perceived cascade structure with a smaller learning rate of
0.0001.

B. Ablation Study

In this part, we demonstrate the effectiveness of the proposed
coarse-to-fine region attention mechanism, incrementally per-
ceived cascade structure, and deep fuison strategy.

Coarse-to-Fine Region Attention Mechanism: We construct a
coarse region mask in terms of the coarse region attention mech-
anism, which guides neural networks to focus on the available
existing area of the distortion center, rather than searching for
the optimal solution in the global distribution. The experimental
results show that the coarse region attention (CRA) mechanism
boosts the accuracy of the distortion center localization. A
comparison of the DC-Net performances is shown in Table I. We
also compared the performance of the regression-based (reg) and
classification-based (cls) DC-Net, where the mean square error
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TABLE I
COMPARISON OF THE DC-NET PERFORMANCE FOR DIFFERENT METHODS: THE

REGRESSION-BASED (REG), CLASSIFICATION-BASED (CLS) DC-NET, AND

COARSE REGION ATTENTION (CRA) MECHANISM

The DC-Net performs more accurately using both the classification strategy and CRA.

TABLE II
ABLATION STUDY OF THE DP-NET PERFORMANCE EVALUATED BY

PSNR AND SSIM

The baseline represents the vanilla version of the DP-Net, while IPC, EF, LF, DF, and FRA
indicate the incrementally perceived cascade structure, early fusion, late fusion, deep fusion,
and fine region attention, respectively.

(MSE) is chosen as the evaluation metric. In the same manner,
we construct a three-region geometric mask based on the mech-
anism of the fine region attention and the prior knowledge of the
omnidirectional distortion. In contrast to the simple structure of
the coarse region mask, we define two types of hyperparameters
when constructing a three-region geometric mask, i.e., the gray
value and range of the regions. Based on the experiments,
we found that the performance of the DP-Net remains nearly
stable when the gray values of the regions change, and thus we
empirically choosea0 = 255, b0 = 200, c0 = 160, andd0 = 50.
By comparing these values, we set r1 = w/8, r2 = w/4, and
r3 = w/2, where w is the width of the omnidirectional image.

To provide more comprehensive features regarding the origi-
nal information and distortion for our learning model, we utilize
a fusion module to generate the attentive aggregation contained
content features, as well as the geometric distortion features. The
experimental results show that this fine region attention (FRA)
mechanism benefits from the performance of the DP-Net, and
the evaluation of the proposal based on the peak signal to noise
ratio (PSNR) and structural similarity index (SSIM) is shown in
Table II. Note that we use the baseline as the evaluated DP-Net
discussed in Section IV-C.

Incrementally Perceived Cascade Structure: We constructed
an incrementally perceived cascade structure in the DP-Net. Be-
sides, the deep fusion strategy is implemented to hierarchically
perceive the relationships among different distortion features.
To demonstrate the effects of this structure, an ablation study of
the DP-Net performance using five different experiments was
performed: the baseline, baseline with incrementally perceived
cascade structure (IPC), baseline with IPC and early fusion (EF),
baseline with IPC and late fusion (LF), and baseline with IPC and
deep fusion (DF). As a benefit of the multiple continuous per-
ception, the deep fusion strategy promotes the communications
of different features in regard to the distortion parameters and
adequately investigates their ambiguous relationship, achieving

TABLE III
PERFORMANCE COMPARISON WITH OTHER METHODS FOR THE

PSNR AND SSIM

the better performance than the early and late fusion strategies.
Table II shows that, for the DP-Net, the complete version of
the proposed method achieves the best performance for both the
PSNR and SSIM.

C. Quantitative Measurement

The OIDC-Net based on the PSNR and SSIM was evaluated
with other state-of-the-art algorithms that can automatically
correct omnidirectional images without any extra conditions, in-
cluding Alemánflores [28], Santanacedrés [37], and Rong [27].
All methods were evaluated using our synthesized test set.

The results of the quantitative measurement are listed in
Table III. As a benefit of predicting both the distortion parame-
ters and distortion centers based on the unified omnidirectional
camera model, and guided by the coarse-to-fine region attention
mechanism, our proposed OIDC-Net significantly outperformed
both traditional approaches and the CNNs-based method in
terms of the PSNR and SSIM. In contrast to the OIDC-Net,
the state-of-the-art algorithms poorly performed on the omnidi-
rectional image correction due to their over-simplified camera
model and negligence of the prior knowledge.

D. Qualitative Results

To highlight the effect of the distortion correction, we ad-
ditionally compared our method with the state-of-the-art algo-
rithms developed by Alemánflores [28], Santanacedrés [37], and
Rong [27], in terms of the visual appearance. We evaluated
these methods using our synthetic omnidirectional images test
set, which offers the ground truth of undistorted images. The
results of the comparison are shown in Fig. 5. Intuitively, the
traditional methods, which rely heavily on hand-crafted fea-
ture detection and optimization, such as Alemánflores [28] and
Santanacedrés [37], consequently produced the unsatisfactory
results. Rong [27] estimated the distortion parameter using the
CNNs, and omitted more distortion coefficients with respect
to the omnidirectional camera model, only focusing on the
learning features from a single omnidirectional image without
any prior knowledge. Thus this method produced inaccurate
classifications on the more challenging omnidirectional distor-
tions. In contrast, our proposed OIDC-Net taked into account the
unified omnidirectional camera model and implicitly obtained
the crucial prior knowledge from the coarse-to-fine attention
mechanism. Therefore, our methods gains more information
in terms of the omnidirectional distortions, achieving the best
visual effects among all of the compared methods.

We also compared our method with the state-of-the-art ap-
proaches using real omnidirectional images from [49]. The
results of the comparison are shown in Fig. 6, and as the figure
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Fig. 5. Qualitative results of synthetic omnidirectional images. For each com-
parison, we show the omnidirectional image, results of the compared methods,
namely, (Alemánflores [28], Santanacedrés [37], and Rong [27]), and the results
of our proposed OIDC-Net approach, from left to right.

Fig. 6. Qualitative results of real omnidirectional images captured using om-
nidirectional cameras [49]. For each comparison, we show the omnidirectional
image, results of the compared methods (Alemánflores [28], Santanacedrés [37],
and Rong [27]), and results of our proposed OIDC-Net approach, from left to
right.

indicates, our correction results are more close to the perspective
projection especially in the boundary region, where the shapes
of objects have been reasonably recovered. Therefore, our pro-
posed OIDC-Net method outperforms the other methods in
this qualitative evaluation and facilitates the scene analysis and
understanding. As shown in Fig. 7, it is obvious to find that the
corrected images obtained by the OIDC-Net gain more accurate
object detection and semantic segmentation results, especially
in the boundary areas. Our algorithm realistically recovers the
real geometric distribution from the severe distortion and thus
benefits other computer vision tasks.

Fig. 7. The detection and segmentation results of the original omnidirectional
images (top) and corrected images using our proposed method (bottom) (best
viewed in color).

VI. CONCLUSION AND FUTURE WORK

In this paper, we present a unified and flexible learning model
for omnidirectional image distortion correction. In contrast to
other traditional approaches, our method avoids the constraint
of having to exploit more images and a calibration pattern, and
as a result outperforms the traditional methods in terms of the
flexibility. Compared with methods that employ CNNs, we lever-
age the coarse-to-fine region attention mechanism and construct
the attentive aggregation using a fusion module, which contains
the original content features and geometric distortion features.
Moreover, an incrementally perceived cascade structure is able
to improve the accuracy of the estimation of the parameters.
Finally we implement the deep fusion strategy to further explore
the perception in relation to different parameters. In future
work, we intend to expand the dataset with a wider range of
coefficients, and aim to determine a method of eliminating
the difficulty in accurately estimating the heterogeneous target
values.
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