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Multi-View Image Classification With Visual,
Semantic and View Consistency

Chunjie Zhang , Jian Cheng , and Qi Tian , Fellow, IEEE

Abstract— Multi-view visual classification methods have been
widely applied to use discriminative information of different
views. This strategy has been proven very effective by many
researchers. On the one hand, images are often treated inde-
pendently without fully considering their visual and semantic
correlations. On the other hand, view consistency is often ignored.
To solve these problems, in this paper, we propose a novel
multi-view image classification method with visual, semantic
and view consistency (VSVC). For each image, we linearly
combine multi-view information for image classification. The
combination parameters are determined by considering both the
classification loss and the visual, semantic and view consistency.
Visual consistency is imposed by ensuring that visually similar
images of the same view are predicted to have similar values.
For semantic consistency, we impose the locality constraint that
nearby images should be predicted to have the same class by
multi-view combination. View consistency is also used to ensure
that similar images have consistent multi-view combination para-
meters. An alternative optimization strategy is used to learn the
combination parameters. To evaluate the effectiveness of VSVC,
we perform image classification experiments on several public
datasets. The experimental results on these datasets show the
effectiveness of the proposed VSVC method.

Index Terms— Multi-view learning, image classification, visual
consistency, semantic consistency, view consistency.

I. INTRODUCTION

IMAGE classification has been widely explored in recent
years. It aims to accurately classify an image based on

its visual content. Multi-view-based image classification by
jointly exploring the discriminative information of different
views has been proven very effective [1]–[8].
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One problem with multi-view-based classification methods
is that different images [9]–[11] are often treated equally
and independently without considering the internal relation-
ships of images. Some images are relatively more difficult
to classify than are others, even if multi-view information is
considered [12]. To alleviate this problem, the use of exemplar
classifier [13]–[16] and sub-classes of images [17]–[20] has
become popular. These methods divide images of the same
class into several sub-classesfor classifier training. However,
images are still treated independently.

Locality information has been proven very effective for
modelling the correlations of images [21]–[28]. Many methods
assume that nearby images or features should be predicted to
have similar values. Although this approach is very effective,
this information is often ignored when modelling multi-view
correlations of images. This is because images have varied
neighbours in different views. We believe that this information
should also be used for multi-view classification.

Additionally, due to visual polysemy, only using visual
similarity is not enough for reliable image classification.
Applications of semantic correlations have also been widely
studied [10], [14], [29]–[37]. Semantic information can be
obtained manually by humans or mined from the Internet.
Although this strategy is effective, it is labour-intensive and is
easily contaminated by noise. Furthermore, domain variance
also hinders performance. Instead, it is more plausible to
use the training images. For each image, we view the joint
predictions of multi-views as its semantics. Similar images
should have similar semantics when learning multi-view com-
bination. The information obtained from multiple views is also
combined to boost classification performance [2], [38]–[43].
This strategy tries to automatically learn optimal multi-view
combination parameters. One problem with this strategy is
that images are often treated individually, leaving the view
consistency information unconsidered. Similar images should
also be combined with consistent views.

In this paper, we propose a novel multi-view image clas-
sification method using visual, semantic and view consis-
tency (VSVC). For each image, we linearly combine the
outputs of multiple views for classification. The combination
parameters are determined by optimizing over the classifica-
tion loss along with visual, semantic and view consistency.
For visual consistency, we use visual similarity to guide the
smoothness of predicted values. The semantic consistency
is achieved by ensuring that nearby images should be pre-
dicted to have the same semantics by multi-view combination.
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Fig. 1. Example images of the (a) Caltech-256 dataset, (b) PASCAL VOC 2012 dataset, (c) CUB-200-2011 dataset, and (d) FGVC-aircraft dataset.

The view consistency is imposed as the smoothness of com-
bination parameters of different views. We conduct image
classification experiments on several public datasets, and the
experimental results demonstrate the effectiveness of the pro-
posed VSVC method. Figure 1 shows the flowchart of the
proposed VSVC method.

The novelty of this paper is twofold:
• First, instead of only using visual consistency, we jointly

use visual consistency in a single view and semantic
consistency and view consistency in multi-view for
multi-view classification.

• Second, the proposed method can use state-of-the-art
pre-learned classifiers as multi-views to improve image
classification performance.

The proposed method differs from traditional manifold
regularization-based methods in two aspects. On the one hand,
instead of only using visual consistency, we also impose
semantic consistency over multi-views. On the other hand,
VSVC uses multi-view correlation by using view consistency
and jointly learning visual, semantic and view correlations.
The proposed VSVC method is more general and universal
and can be combined with various pre-learned classifiers.

The rest of this paper is organized as follows. Related
studies are described in Section II. The details of the proposed
VSVC method are illustrated in Section III. Experimental
results and analysis are given in Section IV. Finally, Section V
concludes.

II. RELATED WORK

Information extracted from multiple views has been widely
used for various applications. Shi et al. [1] targeted the
multimedia problem with multi-view sparse feature selec-
tion. Zhang et al. [2] shared labels among different views
for image classification. Zhang and Zheng [3] used multi-
view hashing to search images in a semi-supervised way.

Tao et al. [4] used adaptive regression for multi-view
semi-supervised classification. Wang et al. [5] used a struc-
tured low-rank constraint for spectral clustering with multi-
view information. Shen et al. [6] searched cross-view
information for label prediction. Wu et al. [7] targeted the
graph classification problem by multiple-structure learning,
while Peng et al. [8] used multi-view boosting with informa-
tion propagation. The use of information from multiple views
could improve classification performance.

Although multi-view-based methods have been proven very
effective, they have ignored various difficult aspects of images.
It would be more effective to consider each image individually
or similar images of the same class jointly.Zhang et al. [12]
used the correlations of exemplar classifiers for semantic mod-
elling of images. Li et al. [13] used low-rank exemplar SVM
classifiers for domain adaptation, while Zhang et al. [14]
used image-level information. Hui and Sankaranarayanan
[15] used virtual exemplars for reflectance estimation, while
Zhu et al. [16] explored semantic features for image and video
stylization. The use of low-rank correlations has also been
widely explored [17]–[19]. Cai et al. [20] used multi-view
information for heterogeneous image feature combination.

Manifold smoothness has often been assumed by ensuring
that visually similar images have similar semantics [21]–[28].
Wang et al. [21] tried to learn a marginalized denoising
dictionary using a locality constraint. Zhang et al. [22] used
the search results for image classification with neighbour
similarity propagation. Kwitt et al. [23] classified scene images
on the semantic similarity graph. Gao et al. [25] imposed a
locality constraint in the sparse coding process, while Li and
Fu [26] used a low-rank constraint to learn robust subspaces.
Ding et al. [27] transferred missing information via a low-rank
constraint. Boiman et al. [28] studied the nearest neighbour of
local features for image classification without training classi-
fiers. However, these methods often ignored the correlations of
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images with different views. The single view and multi-view
as well as view combination information should be jointly
considered to further improve classification performance.

Semantic-based methods have also been widely
used [10], [14], [29]–[37]. Karpathy and Li [29] generated
image descriptions by visual and semantic alignment.
Zhang et al. [10] used the contextual relationships of the
exemplar classifier for discriminative image representation and
classification. Instead of using implicitly generated semantics,
Farhadi et al. [30] used human-defined attributes for object
representation. Zhang et al. [14] used the hierarchical
structure information to classify each image using both visual
and semantic similarities. Li et al. [31] used Internet images
to generate an object bank. However, these images were
often contaminated with noisy information. Zhang et al. [32]
used scale and class consistency to generate codebooks.
Xu et al. [33] tried to adapt information from other domains
for fine-grained classification using the information from
the Internet. Zhang et al. [34] jointly considered the object,
contextual and background information for classification.
To cope with the shortage of labelled images, Zhang et al. [36]
used unlabelled images by ensuring prediction consistency.
Tang et al. [37] proposed multi-view-based support vector
machines.

Semantic correlation has been very useful for classifica-
tion. However, for multi-view image classification, the view
information is also very important and has often been ignored
by researchers [38]–[43]. Nie et al. [38] combined multi-
view physician attributes for health analysis. Li et al. [39]
used low-rank embedding to combine multi-view correlations.
Ma et al. [40] explored the navigation problem with multi-
views. Chang et al. [41] combined semantic representation
with bi-level representation, while Yu et al. [42] ranked images
with deep multimodal distance learning. Takahashi et al. [43]
used audio information to analyse videos.

Many methods have also been proposed to improve clas-
sification performance with various classifiers [44]–[82], e.g.,
AlexNet [44], VGG [45], GoogleNet [46], and ResNet [47].
Zhang et al. [52] generated many codebooks with low-rank
sparse coding. Wang et al. [55] used the locality constraint
for sparse coding. Chatfield et al. [56] re-implemented
many methods to evaluate their details. Wei et al. [57]
explored multi-label image classification with a CNN.
Jointly combining multiple data could eventually improve
performance. A bilinear convolutional neural network was
proposed by Lin et al. [61] to use the spatial layouts of images.
Zhang et al. [62] encoded the spatial information, while
Cui et al. [63] used human-labelled data. Jaderberg et al. [64]
proposed the spatial transformer networks, while
Moghimi et al. [65] boosted a number of networks. The com-
bination of deep networks has also been explored [67]–[70].
Researchers have also used location information of objects
for classification [72], [74] with the sparsity constraint [71].
Meyer et al. [73] combined neighbour information, while
Wang et al. [75] combined multi-view clues in an unsuper-
vised way. Researchers also proposed many view combination
strategies for various visual applications [76]–[84].

TABLE I

SYMBOLS AND THEIR CORRESPONDING DESCRIPTIONS
USED IN THIS PAPER

III. IMAGE CLASSIFICATION WITH VISUAL, SEMANTIC

AND VIEW CONSISTENCY

In this section, we give the details of the proposed multi-
view image classification method using visual, semantic and
view consistency.

A. Linear Multi-View Combination

Considering the two-class classification problem as an
example, suppose that we have a total of V views with images
in the v-th view denoted by (xv

n, yn), n = 1 . . . , N . N is
the number of images, xv

n is the visual representation of the
n-th image in the v-th view, and yn is the label of the n-th
image. The extension to multi-class is straightforward. In this
paper, views refer to visual representations generated by var-
ious state-of-the-art deep convolutional neural network-based
methods [44]–[47]. Note that image representations generated
using various visually based transformations [48] can also be
used. Classifier f v (∗) is the single-view classifier with the
corresponding image representations.

To use the discriminative information of V views, we lin-
early combine the outputs of f v (∗), v = 1, . . . , V to predict
the class of image xv

n as

ŷn =
V∑

v=1

αv
n f v (xv

n) (1)

where ŷn is the predicted label of image xv
n .

Let αn = [α1
n; . . . ; αV

n ] and F(xn) =
[ f 1(x1

n); . . . ; f V (xV
n )], where αv

n , v = 1, . . . , V are the
linear combination parameters of the n-th image that can be
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learned by minimizing the classification error as follows:

(αn, F(∗)) = argmin(αn,F(∗))�(α
T
n F(xn), yn) (2)

where αT
n is the transpose of αn . The classification loss is

denoted by �(∗, ∗). A quadratic hinge loss is used:

�(αT
n F(xn), yn) = max2(0, 1 − αT

n F(xn)yn) (3)

We use the quadratic hinge loss because it is differentiable
and is often used for classification tasks.

B. Visual, Semantic and View Consistency
for Classification

Eq. 2 ignores visual consistency. The values predicted for
visually similar images should be similar in each view. Hence,
we add a visual consistency constraint in a single view to
Eq. 2 as

(αn, F(∗)) = argmin(αn,F(∗))�(α
T
n F(xn), yn)

+ β1

V∑
v=1

Mv∑
m=1

� f v (xv
n) − f v (xv

m)�2e−�xv
n−xv

m�2/σ

(4)

where β1 is the weighting parameter of the visual consistency
constraint in a single view. Parameter σ is the scaling parame-
ter that controls the influence of view consistency. Mv is the
number of nearby images for the v-th view. The neighbours
are selected using Euclidean distance. In this paper, we simply
set Mv to 5 consistently with [55].

In addition, the predicted values (semantics) of visually
nearby images should be similar when multi-view combination
is used. We similarly add a semantic consistency constraint to
Eq. 4 as follows:

(αn, F(∗)) = argmin(αn,F(∗))�(α
T
n F(xn), yn)

+
V∑

v=1

Mv∑
m=1

(β1� f v (xv
n)− f v (xv

m)�2e−�xv
n−xv

m�2/σ

+ β2�F(xn) − F(xm)�2e−�xv
n−xv

m�2/σ ) (5)

where β2 is the weighting parameter of the semantic consis-
tency constraint.

Moreover, the view similarity of nearby images should also
be combined. We add a view consistency constraint to Eq. 5 as
follows:

(α, F(∗)) = argmin(α,F(∗))

N∑
n=1

(�(αT
n F(xn), yn)

+
V∑

v=1

Mv∑
m=1

(β1� f v (xv
n) − f v (xv

m)�2e−�xv
n−xv

m�2/σ

+ β2�F(xn) − F(xm)�2e−�xv
n−xv

m�2/σ

+ β3�αv
n − αv

m�2e−�xv
n−xv

m�2/σ )) (6)

where α = [α1; . . . ; αN ]. β3 is the weighting parameter of
view consistency. Furthermore, we add a regularization term
to the linear combination parameter αv

n . Accordingly, let

xn = [x1
n; ..; xV

n ]; then, the overall objective function can be
written as

(α, F(∗)) = argmin(α,F(∗))

N∑
n=1

(�(αT
n F(xn), yn)

+
V∑

v=1

Mv∑
m=1

(β1� f v (xv
n) − f v (xv

m)�2e−�xv
n−xv

m�2/σ

+ β2�F(xn) − F(xm)�2e−�xv
n−xv

m�2/σ

+ β3�αv
n − αv

m�2e−�xv
n−xv

m�2/σ ) + β4�αn�2) (7)

C. Optimization

We can perform optimization in Eq. 7 to determine the opti-
mal α and F(∗). However, it is very hard to jointly optimize
over α and F(∗). It is more feasible to alternatively optimize
over α/F(∗) while keeping F(∗)/α fixed.

If F(∗) is fixed, Eq. 7 is equivalent to

α = argminα

N∑
n=1

(�(αT
n F(xn), yn)

+ β3

V∑
v=1

Mv∑
m=1

�αv
n − αv

m�2e−�xv
n−xv

m�2/σ

+ β4�αn�2) (8)

However, jointly optimizing over all N images is still very
difficult. We can simplify and iteratively optimize over each
image by keeping the other combination parameters fixed.
In this way, Eq. 8 can be optimized as follows:

αn = argminαn �(α
T
n F(xn), yn)

+ β3

v−1∑
v �=1

Mv�∑
m=1

�αv �
n − αv �

m �2e−�xv�
n −xv�

m �2/σ

+ β3

Mv∑
m=1

�αv
n − αv

m�2e−�xv
n−xv

m�2/σ

+ β3

V∑
v �=v+1

Mv�∑
m=1

�αv �
n − αv �

m �2e−�xv�
n −xv�

m �2/σ

+ β4�αn�2, ∀n = 1, . . . , N (9)

This problem can be solved over each view while keeping
the combination parameters of other views fixed. In this way,
the second term, the fourth term and part of the fifth term are
fixed which have no influences on the optimization. Let

L(αv
n ) = max2(0, � − αv

n f v (xv
n))

+ β3

Mv∑
m=1

�αv
n − αv

m�2e−�xv
n−xv

m�2/σ + β4�αv
n�2 (10)

where � = 1−∑V
i=1,i �=v αi

n f i (xi
n). Note that αv

m is fixed while
optimizing over αv

n in Eq. 10. We can calculate the derivative
of L(αv

n ) as

∂L(αv
n )

∂αv
n

= 2(β3

Mv∑
m=1

(αv
n − αv

m)e−�xv
n−xv

m�2/σ

− max(0, �−αv
n f v (xv

n)yn) f v (xv
n)yn+β4α

v
n ) (11)
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If α is fixed, Eq. 7 can be rewritten as

F(∗) = argmin F(∗)

N∑
n=1

(�(αT
n F(xn), yn)

+
V∑

v=1

Mv∑
m=1

(β1� f v (xv
n) − f v (xv

m)�2e−�xv
n−xv

m�2/σ

+ β2�F(xn) − F(xm)�2e−�xv
n−xv

m�2/σ ) (12)

This problem can also be iteratively optimized over classifiers
of each view as follows:

f v (∗) = argmin f v (∗)L( f v (∗))∀v = 1, . . . , V (13)

with

L( f v (∗)) =
N∑

n=1

(�(αv
n f v (xv

n) + �, yn)

+
Mv∑

m=1

(β1� f v (xv
n) − f v (xv

m)�2e−�xv
n−xv

m�2/σ

+ β2� f v (xv
n) − f v (xv

m) + 	�2e−�xv
n−xv

m�2/σ )

	 =
V∑

i=1,i �=v

f i (xi
n) − f i (xi

m)

� =
V∑

i=1,i �=v

αi
n f i (xi

n) (14)

In this paper, we use the sigmoid classifier as f v (∗):

f v (x) = 1

1 + e−γ T
v x

, ∀v = 1, . . . , V (15)

and its optimization is quite straightforward. Parameter γ v can
be optimized with

∂L( f v (∗))

∂γ v

= ∂L( f v (∗))

∂ f v (∗)

∂ f v (∗)

∂γ v

(16)

Once the optimal α and F(∗) have been learned, we can
predict the classes of images accordingly.

D. Image Class Prediction

For each testing image, we learn the combination parameter
to predict its class using Eq.1 with fixed F(∗). The com-
bination parameter can be learned similarly to Eq.9 without
considering the quadratic hinge loss term �(∗, ∗). Let x̃v

t be
the representation of one testing image of the v-th view,
v = 1, . . . , V ; the multi-view combination parameter α̃t =
[̃α1

t ; ..; α̃v
t ; ..; α̃V

t ] can be learned by solving

α̃t =argminα̃t
β4�α̃t�2+β3

V∑
v=1

M̃v∑
m=1

�α̃v
t −αv

m�2e−�x̃v
t −xv

m�2/σ

(17)

where M̃v is the number of nearby images of x̃v
t . The image

class ỹt can then be predicted as

ỹt =
V∑

v=1

α̃v
t f v (x̃v

) (18)

Algorithm 1 Steps of the Proposed Multi-View Combination-
Based Image Classification Method With Visual, Semantic and
View Consistency

Fig. 2. Influences of β1 on the four datasets.

Algorithm 1 describes the steps of the proposed multi-view
combination-based image classification method with visual,
semantic and view consistency.

IV. EXPERIMENTS

To evaluate the effectiveness of the proposed multi-view
image classification method using visual, semantic and
view consistency (VSVC), we conduct image classification
experiments on the Caltech-256 [49], PASCAL VOC 2012
[50], CUB-200-2011 [59], and FGVC-aircraft [60] datasets.
Figure 2 shows several example images of the Caltech-256,
PASCAL VOC 2012, CUB-200-2011, and FGVC-aircraft
datasets.

A. Experimental Setup

We use four widely used deep convolutional neural networks
(AlexNet [44], VGG [45], GoogleNet [46] and ResNet [47]) as
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TABLE II

CLASSIFICATION PERFORMANCES OF THE PROPOSED VSVC METHOD AND OTHER BASELINE METHODS ON THE CALTECH-256 DATASET

four views for image representation and classification. We pre-
train these networks on the ImageNet 2012 dataset and fine-
tune these networks on the Caltech-256, PASCAL VOC 2012,
CUB-200-2011, and FGVC-aircraft datasets. We remove the
last fully connected layer and use 4,096 dimensions of the
penultimate layer as representations of the corresponding view.
Since local feature-based methods are often evaluated on the
Caltech-256 dataset, we show the performance of using local
features with multi-views on the Caltech-256 dataset (VSVC-
LC [2]). We also show the outcome of using the average value
of predicted results of multi-views (VSVC(average)). We use
30 DELL EMC PowerEdge C4130 with 200 GPU (Nvidia
P80 and P100) which can do 1107T floating-point operations
per second. We follow the same experimental setup as in [2] by
using the same six views. Local features are densely extracted
with 16×16 pixels and 6 pixels of overlap. The codebook
size is set to 1,000 as in [2]. We set σ to the medium value
of all �xv

n − xv
m�. The maximum number of iterations is

set to 60 in Algorithm 1. For a fair comparison, we follow
the same experimental setup as other researchers and use the
same number of training images. The optimal parameters are
determined by ten-fold cross validation. We directly compare
with the results reported by other baseline methods instead
of re-implementing them. The average per-class classification
rate is used to quantitatively evaluate the effectiveness of the
proposed method.

B. The Caltech-256 Dataset

There are 256 classes of images in this dataset. The
total number of images is 29,780. We randomly select
15/30/45/60 training images per class for training and use
the other images for testing, as in [49]. We randomly select
images ten times for classification. The mean and standard
deviation of the results are used for evaluations. We also
show the performance of the proposed VSVC method with
local features by combining the same six views as in MVLS-
LC [2]. Table 2 presents the performance of the proposed
VSVC method and other baseline methods.

We can make four conclusions based on Table 2.
First, compared with single-view-based methods [45], [49],

TABLE III

IMAGE CLASSIFICATION PERFORMANCES OF VSVC METHOD AND OTHER

BASELINE METHODS ON THE PASCAL VOC 2012 DATASET

the combination of multi-view data is more useful for
image classification. Second, the proposed VSVC method
improves over other similarity-based methods [52], [54], [55].
This is because we also use the semantic and view consis-
tency information. Third, compared with other multi-view-
based methods [2], [12], [54], [69]–[71], the proposed VSVC
method achieves a superior performance. We jointly consider
visual, semantic and view consistency, while other meth-
ods only use visual or semantic correlations. Additionally,
VSVC dynamically optimizes over multi-view combination
and single-view classifier training. Fourth, VSVC-LC is also
able to improve over MVLS-LC [2] using the same views with
local features. The performance can be further improved using
deep convolutional neural networks.

C. The PASCAL VOC 2012 Dataset

This dataset has twenty classes (aeroplane, bicycle, boat,
bottle, bus, bird, car, cat, cow, chair, dining table, dog,
horse, person, sheep, motorbike, train, potted plant, sofa and
tv/monitor). There are a total of 22,531 images. Images are
split into a training and validation set and a test set with
11,540 and 10,991 images, respectively. We follow the same
experimental setup as in [50]. We use the training set to train
classifiers and use the validation set for parameter tuning.
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TABLE IV

PER-CLASS MAP COMPARISONS ON THE PASCAL VOC 2012 DATASET

The training and validation images are then merged for clas-
sifier training with the selected parameters.

Table 3 shows performance comparisons of VSVC with
other baseline methods. We can see that the proposed VSVC
method improves over these baseline methods. In particular,
VSVC outperforms single-view-based methods [45], [56].
Additionally, VSVC improves over [57], which uses detection
information for classification. Moreover, the proposed method
performs better than other multi-view or combination-based
methods [2], [46]. We also show the per-class performance
results in Table 4. We can see from Table 4 that VSVC is
able to improve over other methods on all the twenty classes
with multi-view combination. Furthermore, the improvements
on rigid objects are not as large as those on non-rigid objects.
The non-rigid objects have larger visual variations than those
of rigid objects. The joint consideration of visual, semantic
and view consistency helps alleviate this problem.

D. The CUB-200-2011 Dataset

There are 11,788 images that belong to 200 different bird
species. The images are pre-divided into training and test
sets. Both image labels and bounding boxes are given. In this
paper, we only use image labels for classification. Performance
comparisons of the proposed method with other baseline
methods are presented in Table 5.

We can draw three conclusions from Table 5. First,
the proposed VSVC method is able to outperform many the
state-of-the-art methods on this dataset, even when bound-
ing box information is used [18], [63], [66]. This result
proves the effectiveness of the proposed method. Second,
VSVC is able to improve over methods based on VGG
[45], [61], [65], [66], AlexNet [18], GoogleNet [63], [64]
and ResNet [73], [74]. Third, the proposed method can also
achieve performance superior to that of combinational-based
methods [64], [65], [74].

TABLE V

PERFORMANCE COMPARISONS OF VSVC AND OTHER BASELINE

METHODS ON THE CUB-200-2011 DATASET. BB: BOUNDING BOX

E. The FGVC-Aircraft Dataset

This dataset has 10,000 images of aircraft. There are
100 classes that are very similar. We test the performance
of the proposed VSVC method and show the classification
accuracy in Table 6 along with the respective figures for
other baseline methods. We can draw similar conclusions as
from Table 5. The proposed VSVC method improves over
other baseline methods. Additionally, compared with non-rigid
bird images, the rigid aircraft often occupy larger portions of
images. We are able to improve the classification performance
by jointly considering the visual, semantic and view consis-
tency. VSVC also improves over boostCNN, which tries to
combine a series of convolutional neural networks for classifi-
cation. The proposed VSVC method also improves over many
manifold regularization-based methods. By jointly impos-
ing visual, semantic and view consistency, we can improve
the classification accuracy over that of traditional manifold
regularization-based methods. Finally, VSVC(average) per-
forms not as good as VSVC. Average operation can be used
to speed up the computation.
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TABLE VI

PERFORMANCE COMPARISONS OF VSVC AND OTHER BASELINE
METHODS ON THE FGVC-AIRCRAFT DATASET

Fig. 3. Influences of β2 on the four datasets.

Fig. 4. Influences of β3 on the four datasets.

F. Influence of Parameters

Parameters β1, β2 and β3 control the three aspects of
consistency constraints. We plot their influences on the
Caltech-256 dataset (60 training images), the PASCAL VOC
2012 dataset, the CUB-200-2011 dataset, and the FGVC-
aircraft dataset in Figure 3, Figure 4 and Figure 5, respectively.
We observe that the performance is unsatisfactory if β1, β2
and β3 are set to large or small values. This observation
shows that imposing too small or very large consistency
constraints leads to performance degradation. We can see from
Figure 3, Figure 4 and Figure 5 that setting β1, β2 and β3 to
0.1∼1 results in satisfactory performance.

Fig. 5. Influences of β4 on the four datasets.

Fig. 6. Normalized objective values of Eq.7 with the number of iterations
on the four datasets. The normalized objective value of one trivial solution
(αv

n = 2yn/V, f v (xv
n ) = 0.5) is also given.

Parameter β4 controls the influence of the regularization
term. We plot its influence on the four datasets in Figure 6.
We can see from Figure 6 that the results are not as sensitive
to β4 as they are to β1, β2 and β3. The performance remains
relatively stable as long as β4 is not set to very large values.

The proposed method can iteratively minimize the objective
value of Eq. 7. To demonstrate the robustness of the proposed
method, we randomly initialize the parameters for 100 times
and plot the mean of the normalized objective values of Eq.7 of
each iteration on the four datasets in Figure 6. For each random
initialization process, the normalized objective values of the
Mit iterations is obtained by normalizing their values with the
initial value of Eq.7. The normalized objective value of one
trivial solution (αv

n = 2yn/V , f v (xv
n ) = 0.5) is also given

in Figure 6. We can see from Figure 6 that the objective value
of Eq. 7 corresponding to the optimized parameters is much
smaller than a trivial solution.

G. Ablation Study

We use visual, semantic and view consistency for image
classification. To show their influences, we present the
performance resulting from imposing different consistency
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TABLE VII

INFLUENCES OF VISUAL, SEMANTIC AND VIEW CONSISTENCY ON THE
CALTECH-256 DATASET (60 TRAINING IMAGES), THE PASCAL VOC

2012 DATASET, THE CUB-200-2011 DATASET, AND THE FGVC-
AIRCRAFT DATASET. NO VISUAL, NO SEMANTIC AND NO VIEW

REPRESENT THE PERFORMANCES OF THE PROPOSED VSVC
METHOD BY SETING β1 , β2 AND β3 TO 0 RESPECTIVELY

constraints on the four datasets in Table 7. We can see from
Table 7 that the three consistency constraints help improve the
classification performance. In addition, the relative improve-
ments due to the three consistency constraints vary on different
datasets. We believe that this result occurs because of the class
variations of different datasets. Visual similarity is less reliable
for images with large inter-class variations. This problem can
be alleviated by using semantic and view consistency.

V. CONCLUSION

In this paper, we proposed a multi-view image classifi-
cation method with visual, semantic and view consistency.
We linearly combined multiple views for classification. The
combination parameters were determined by exploring the
classification loss and visual, semantic and view consistency
constraints. First, we ensured that visually similar images were
predicted to have similar values. Second, we used semantic
consistency to ensure the smoothness of predictions. Third,
similar images were also combined with consistent views.
We conducted image classification experiments on several
public datasets, and the experimental results demonstrated the
effectiveness of the proposed method.
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