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FilterNet: Adaptive Information Filtering Network
for Accurate and Fast Image Super-Resolution

Feng Li, Huihui Bai , and Yao Zhao , Senior Member, IEEE

Abstract— Deep convolutional neural network (CNN)
approaches have achieved impressive performance for image
super-resolution (SR). The main issue of image SR is to effectively
recover the high-frequency detail of low-resolution (LR) input.
However, existing CNN methods often inevitably exhibit a
large amount of memory consumption and computational
cost. In addition, in most SR networks, the low-frequency and
high-frequency components of the LR features are treated
equally in the training process, which can ignore the local
detailed information and hinder the representational capacity of
networks. To solve these issues, in this paper, we propose a deep
adaptive information filtering network (FilterNet) for accurate
and fast image SR. In contrast to the existing methods that
adopt fully CNN methods to directly predict the HR images,
the proposed FilterNet concentrates on more useful features
and adaptively filters the redundant low-frequency information.
In general, we present the dilated residual group (DRG), which
consists of multiple dilated residual units. The DRGs can directly
expand the receptive field of the network to efficiently exploit the
contextual information of the LR input. In the dilated residual
unit, a gated selective mechanism is proposed to adaptively learn
more high-frequency information and filter the low-frequency
information. Besides, we introduce a novel adaptive information
fusion structure, which builds long scaling skip connections
among the DRGs to rescale the hierarchical features and fuse
more detailed information. The scaling weights can be deemed as
the part parameters of our network and trained adaptively. The
Extensive evaluations on benchmark datasets demonstrate that
our FilterNet achieves superior performance both on accuracy
and speed compared with recent state-of-the-art methods.

Index Terms— Image super-resolution, dilated convolution,
gated selective mechanism, adaptive information fusion.

I. INTRODUCTION

S INGLE image super-resolution (SISR) aims to recover
the corresponding high-resolution (HR) image from its

low-resolution (LR) observation. Image SR has been widely
used in various image and video processing tasks, such as
surveillance imaging, medical imaging, and video streaming.
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The image SR problem is typically an ill-posed problem since
there are numerous solutions for LR input. To alleviate this
inverse problem, plenty of image SR methods constrain the
solution with strong prior knowledge, which can be roughly
categorized into interpolation-based methods, reconstruction-
based methods, and learning-based methods.

Interpolation-based methods utilize fixed filters [1] or adap-
tive filters [2]–[4] to produce HR images from given LR
images by estimating the unknown pixels in HR grids.
Although these methods are generally simple and fast for
real-time SR applications, they are prone to overlook the
high-frequency detail, which can lead to blurry edges and
noticeable artifacts. Reconstruction-based methods assume
that the corrupted images are produced by multiple degra-
dation factors and restore the HR images by reversing the
degradation process. Based on the maximum a posteriori prob-
ability (MAP), most methods impose specific prior knowledge
as regularization terms to regularize the recovery process. Typ-
ically, image priors include edge priors [5]–[7], gradient profile
priors [8], non-local similarity [9], and total variation [10].
Though these types of SR approaches can preserve sharper
edges to some extent, they usually result in unpleasant artifacts
and overly smooth reconstruction results.

Learning-based methods estimate HR pixels by exploiting
the internal similarities of image patches or learning the
relationships between external LR and HR exemplar pairs.
Based on the sparse signal representation, Yang et al. [11]
jointly train two dictionaries for LR and HR image patches.
Dong et al. [12] present an adaptive sparse domain selec-
tion (ASDS) and an adaptive regularization scheme to learn
various sets of bases from a pre-collected dataset of example
image patches for image SR. Zhu et al. [13] propose a
fast image SR method based on self-example patch-based
dictionary learning and sparse representation, which exploits
the sparse signal representation theory in the framework of
compressive sensing (CS) and dictionary learning of image
patches. In [14], Timofte et al. propose an anchored neighbor
regression (ANR) approach, which combines sparse dictio-
nary learning with neighbor embedding methods for fast
image SR reconstruction. Timofte et al. further introduce an
improved variant of ANR (A+) [15], which super-resolves
the problem of image upscaling based on the features and
anchored regressors from ANR. Peleg and Elad [16] address
the image SR problem using a statistical prediction model
based on the sparse representations of low- and high-resolution
image patches. By exploiting one-to-many correspondences
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between LR and HR patches, Xiong et al. [17] propose
a statistical method called soft information and decision to
improve the reconstruction accuracy. In [18], Huang et al.
present a self-similarity driven SR method that uses the
transformed self-exemplars (SelfExSR), which exploits the
patch search space expansion for improving the self-exemplar
search. Schulter et al. [19] propose an approach for SISR
via random forests, which directly maps from low to high-
resolution patches using random forests.

Recently, due to the superior capacity of deep learning
models, especially the convolutional neural network (CNN),
various CNN methods have been developed to perform
SISR and have achieved impressive performance. In [20],
Dong et al. first introduce a fully convolutional neural network
for image SR (SRCNN), which directly learns an end-to-
end mapping between LR and HR images. Inspired by the
VGG-net [21] used in image classification, Kim et al. [22]
present a very deep convolutional network (VDSR) for accu-
rate SR reconstruction. Kim et al. [23] further introduce a
deeply recursive convolutional network (DRCN) which uses
recursive-supervision and skip connections to ease the training
process. Motivated by the success of residual learning net-
works (ResNet) [24]–[28] utilize the residual learning formu-
lation to train very deep networks for better SR performance.

Though the above methods have achieved promising per-
formance, most of these deep networks still exhibit some
drawbacks. First, some networks [20], [22], [23] have small
receptive fields, which are limited to exploiting the con-
textual information of LR input images. Although deeper
models [25], [28], [29] can increase the receptive fields by
stacking more convolutional layers, they tend to face the
challenges of memory consumption and computational com-
plexity. The efficiency of SR reconstruction must be sacrificed
to maintain the reconstruction accuracy, which is seriously
detrimental to real-time applications. Second, the main issue of
image SR is to recover the high-frequency detail of input LR
counterparts. In most CNN based SR models, the redundant
low-frequency and high-frequency information are treated
equally in the training process, which limits the ability to
extract more detailed information and maximize the represen-
tational capacity of networks. Finally, most image SR methods
commonly minimize the mean squared error (MSE) between
the reconstructed HR image and the ground truth image, which
can fail to recover sharp edges and lead to misleading artifacts.

To address the above problems, we propose an adaptive
information filtering network (FilterNet) to adaptively learn
more useful features for fast and accurate image SR. In the
proposed FilterNet, a feature extraction module is first adopted
to extract the shallow LR features from the observed LR
images. Then, motivated by the fact that dilated convolution
supports exponentially expanding the receptive field without
increasing parameters or loss resolution, we present dilated
residual groups (DRGs) to efficiently exploit the contex-
tual information of the LR input image. Each DRG con-
sists of multiple dilated residual units composed of dilated
convolutional layers to expand the receptive field of the
network. To concentrate on more useful information for high-
frequency detail reconstruction, we incorporate the gated

selective mechanism (GSM) into our dilated residual unit,
termed the selective residual unit (SRU), to rescale the internal
features and suppress the less valuable features. Moreover,
instead of directly using traditional skip connections to speed
up the training process, we propose an adaptive information
fusion structure (AIFS), which adaptively assigns different
scaling weights to different inputs of the bypass connections.
Such SRU and AIFS allow our proposed FilterNet to learn
more useful features to help better recover the image details
and maximize the pixel-wise fitting capacity for highly accu-
rate image SR reconstruction. Furthermore, we employ an
upscale module for upsampling the previous feature maps
to a finer level. Finally, a convolutional layer is used to
predict the HR residual images. We conduct an element-wise
addition operation on the predicted HR residual images and
the correspondingly upsampled LR images to obtain the final
HR images.

Overall, the main contributions of this work can be summa-
rized as follows:

1) We propose a novel FilterNet framework to solve the
image SR problem. The proposed network can efficiently
exploit the contextual information of LR input images and
adaptively rescale different types of features to produce
highly accurate results.

2) The proposed FilterNet employs multiple cascaded
dilated residual groups (DRG) that consist of many
selective residual units (SRU) with a stacked style. The
SRU first utilizes dilated convolutional layers to expand
the receptive field of the network, which can effec-
tively exploit the contextual information. To concentrate
on more useful information for high-frequency detail
reconstruction, we propose the gated selective mecha-
nism (GSM) and incorporate it in the SRU to adaptively
learn more high-frequency information and filter the
low-frequency information.

3) We present an adaptive information fusion struc-
ture (AIFS), which builds adaptively weighted skip con-
nections among these DRGs to pass more useful features
and improve the representational capacity of the network.
With the structure of the proposed FilterNet, our model
outperforms state-of-the-art methods in terms of both
speed and accuracy.

The rest of this paper is organized as follows. The related
works are briefly reviewed in Section II. Section III introduces
the proposed FilterNet with a detailed analysis of every com-
ponent. The implementation details and experimental results
on several public benchmarks are presented in Section IV. The
conclusion of this paper is summarized in Section V.

II. RELATED WORK

A. Deep Neural Networks for Image Super-Resolution

Since Dong et al. [20] first propose a three-layer CNN
for image SR (SRCNN), the majority of recent works
have adopted deep neural networks to super-resolve the
ill-posed problem and have achieved dramatic improvements.
Mao et al. [25] propose a very deep convolutional encoder-
decoder network for image restoration (RED), which uses
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multiple convolutional and deconvolutional layers on the end-
to-end mappings from the corrupted images to the original
HR images. Zhang et al. [26] propose a deep CNN for image
denoising (DnCNN) with residual learning and extend it to
the image SR task. Yang et al. [27] integrate edge priors into
a residual network to recurrently perform image SR. In [28],
Tai et al. propose a deep recursive residual network (DRRN)
for image SR, which adopts both local and global learning
strategies to mitigate the difficulty of training very deep
networks. Tai et al. [29] further propose a persistent memory
network (MemNet) with much a deeper architecture for image
restoration.

However, all of these methods utilize bicubic interpola-
tion to upsample the original LR images to the HR space
before applying them into networks, which can increase the
computational complexity for image SR. To investigate more
accurate and efficient SR methods, Dong et al. [30] employ a
deconvolutional layer at the end of the network to replace the
bicubic interpolation and propose a fast convolutional neural
network for image SR (FSRCNN). Lai et al. [31] propose
the Laplacian pyramid SR network (LapSRN) to progressively
reconstruct the sub-band residual HR images and use a decon-
volutional layer for upsampling the LR images. Lai et al. [32]
further present a multi-scale model (MS-LapSRN) to learn the
inter-scale correlation and improve the reconstruction accuracy
compared with single-scale models. In [33], Han et al. argue
that many deep SR models can be reformulated as a single-
state recurrent neural network (RNN) with finite foldings and
propose a dual-state recurrent network (DSRN) for image SR.
Shi et al. [35] propose an efficient sub-pixel convolutional
neural network (ESPCN), which introduces a sub-pixel con-
volutional layer to learn the upscaling operation for image
and video SR. Ledig et al. [36] propose an SR generative
adversarial network (SRGAN) for a 4× upscaling factor,
which also employs the sub-pixel convolutional layer proposed
in ESPCN to increase the resolution of the input images.
In [37], Wang et al. present a resolution-aware network (RAN)
to address the SR problem, which designs an upsampling
network consisting of multiple submodules to learn from the
training samples of different resolutions.

B. Dilated Convolution

Dilated convolution was originally developed in
algorithm àtrous for wavelet decomposition in signal
processing [38], [39], which removes the downsampling
operator from the usual implementation of discrete wavelet
transform (DWT). In this implementation, the responses of
the filters are upsampled, thereby inserting “holes (zeros)”
between nonzero filter taps in convolutional filters, which is
equivalent to a convolution with a larger filter derived from
the original filter by inserting it with zeros. In a 1D signal,
the output y[i ] of the dilated convolution of a 1D signal x[i ]
with a filter w[i ] of length K is defined as:

y[i ] =
K∑

k=1

x[i + r · k] · w[k] (1)

Fig. 1. The receptive field of a dilated convolution with a kernel size of
3 × 3 and different dilated rates r of 1, 2, and 4. The standard convolution is
a special case for rate r = 1. (a) r = 1. (b) r = 2. (c) r = 4.

The parameter r is termed the dilated rate, which corresponds
to the input stride with which we sample the input signal.
As a special case, the dilated convolution with r = 1 yields
the standard convolution.

In image processing, 2D dilated convolution can be inter-
preted as inserting “holes (zeros)” between each pixel in the
convolution kernel. Therefore, the dilated convolution of a 2D
signal x[m, n] with a filter w[i, j ] of length M and width N
can be defined as

y[m, n] =
M∑

i=1

N∑
j=1

x[m + r · i, n + r · j ] · w[i, j ] (2)

where y[m, n] is the output of the dilated convolution oper-
ation from x[m, n]. Given a convolution kernel with a size
of k × k, the resulting kernel size can be increased to k +
(k − 1) × (r − 1) with the dilated rate r . As shown in Fig. 1,
with the same kernel size 3 × 3, one dilated convolution layer
can obtain the receptive field of 5 × 5 with r = 2, but the
standard convolution can only obtain a 3 × 3 receptive field.
This demonstrates that we can adopt a dilated convolution to
effectively enlarge the receptive fields of networks with fewer
layers or parameters compared with the standard convolution.
Dilated convolution has been used in various tasks, such as
image segmentation [40]–[42], object detection [43], image
classification [45], and scenes understanding [46].

III. PROPOSED METHOD

In this section, we elaborate on each main component of
our proposed FilterNet for image SR. As shown in Fig. 2, our
FilterNet consists of four parts: a feature extraction module,
multiple cascaded dilated residual groups (DRG), an upscale
module, and a reconstruction layer. Then, we analyze the
architecture of our network, generally involving the depth
of the network and the parameters of each layer. Finally,
we introduce the loss function for training our models.

A. Feature Extraction

In image SR, the quality degradation of an HR image
xH R to an LR image xL R can be caused by blurring and
downsampling. The corrupted low-quality image xL R can be
represented as

xL R = B D(xH R) + n (3)

where B and D denote the blurring and downsampling
operations, respectively, and n is the additive noise in the
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Fig. 2. The network architecture of our proposed adaptive information filtering network (FilterNet) for image SR.

degradation process. Let us denote the xL R and x̂H R as the
observed LR input and the estimated HR output of FilterNet.

With respect to the feature extraction module, we use two
convolutional layers with a kernel size of 3 × 3 to extract
the shallow LR features from the original LR input. The
first convolutional layer extracts the features x1 and can be
represented as

x1 = f1(xL R) (4)

where f1(·) denotes the first feature extraction function. x1 is
used for further feature extraction and serves as the input for
information fusion. Therefore, we have

x2 = f2(x1) (5)

where f2(·) represents the second feature extraction function
and x2 denotes the further extracted LR features used as the
input of the following state.

B. Dilated Residual Group
Now we introduce the detail of our proposed dilated residual

group (DRG) in Fig. 2, which is composed of multiple selec-
tive residual units (SRU) and a 1×1 convolutional layer with a
stacked style. Each SRU combines the dilated convolution with
the gated selective mechanism (GSM) to efficiently exploit the
contextual information and ensure that the proposed network is
more sensitive to informative features. In addition, the adaptive
information fusion structure (AIFS), which adopts long scaling
skip connections among these DRGs, is used to pass more
useful features to later stages for detailed information fusion.

1) Selective Residual Unit: By assuming that optimizing
residual mapping is easier than the original unreferenced
mapping, He et al. [24] propose the deep residual net-
work (ResNet), which explicitly utilizes few stacked layers
to fit the residual mapping rather than directly fitting the
desired underlying mapping. As shown in Fig. 3(a), for the
i th residual unit, denoting the input as xi−1 and the desired
underlying mapping as H (xi), the residual mapping is defined
as F(xi−1) = H (xi) − xi−1. Thus, the desired formulation
of F(xi−1) + xi−1 can be realized with the identity branch
illustrated in Fig. 3(a). Starting with the ResNet architecture,
Yu et al. [45] propose the Dilated Residual Network (DRN),
which uses dilated convolutions to increase the receptive

Fig. 3. (a) The architecture of the residual unit in ResNet. (b) The
architecture of the dilated residual unit in DRN, where “dconv” denotes the
dilated convolution. (c) The architecture of the dilated residual unit with a
gated selective mechanism in our proposed FilterNet, where “⊗” denotes the
element-wise product operation.

field of higher layers and compensate for the reduction of
the receptive field by removing the subsampling layers. The
dilated residual unit corresponding to the residual unit in
ResNet is shown in Fig. 3(b). Here, we use the dilation rate
r = 2 to give a simple example. With the kernel size of 3×3,
we can see that the residual unit only gains the receptive field
of 5 × 5 but the dilated residual unit in Fig. 3(b) can achieve
the receptive field of 9 × 9.

In CNN based image SR, the predicted pixel value of the
desired HR image depends on the receptive field of networks.
The size of the receptive field determines that the amount of
contextual information of the LR input image can be captured
to infer high-frequency components. To obtain sufficient con-
textual information and provide more clues for better high-
frequency detail prediction, as sketched in Fig. 3(c), in our
proposed SRU, we first use two dilated convolutional layers
to obtain a larger receptive field. With the input xi−1 of the
i th SRU, the output xi of the first two dilated convolutional
layers can be represented as

xi = fi,2(τ ( fi,1(xi−1))) (6)

where fi,1(·) and fi,2(·) denote the dilated convolution oper-
ations, and τ (·) denotes the ReLU [47] activation function.

2) Gated Selective Mechanism: In image SR, the LR image
contains redundant low-frequency components and necessary
high-frequency components including edges, textures and
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Fig. 4. The graphs of sigmoid and hyperbolic tangent (tanh) functions.
(a) Sigmoid function. (b) Hyperbolic tangent (tanh) function.

other details. Previous CNN-based SR methods extract the fea-
tures from the LR input and equally learn all the features dur-
ing the training process, which lack flexibility in dealing with
the low- and high-frequency information. To solve the above
problems, we propose a gated selective mechanism (GSM)
to exploit more important high-frequency information and
suppress less valuable low-frequency information. Specifically,
after the output of the second dilated convolutional layer xi

activated by ReLU, and the information flow is input into
two branches. As illustrated in Fig. 3(c), in each branch,
a convolutional layer with a kernel size of 1×1 is employed to
integrate the information on each pixel in different channels.
Next, we use the sigmoid function to adaptively rescale the
internal features and control the output information flow into
the later state. The graph of the sigmoid function is visualized
in Fig. 4(a). We can observe that the sigmoid function has a
domain of all real numbers, with a return value monotonically
increasing from 0 to 1. Hence, in the top branch of GSM,
the sigmoid function layer after the 1 × 1 convolutional
layer can be viewed as the input gate, which decides what
previous input features need to be updated. Compared to
the sigmoid function, as shown in Fig. 4(b), the hyperbolic
tangent (tanh) function squashes the real numbers to the range
between [−1, 1]. In the bottom branch of GSM, with all of
the input features from the previous state, the tanh function
layer is utilized to create a new candidate value vector. Then,
we combine these two to create the new updated features by
conducting a multiply operation on them. The gated selective
function can be formulated as

xs
i = σ(gi,1(τ (xi ))) ⊗ tanh(gi,2(τ (xi ))) (7)

where σ(·) and tanh(·) represent the sigmoid and tanh
functions, respectively. gi,1(·) and gi,2(·) are the convolution
operations in the two branches. xs

i is the new candidate
value produced by GSM, and ⊗ is the element-wise product
operation. Finally, followed by a convolutional layer with a
kernel size of 1 × 1, the new candidate value xs

i is integrated
and further added to the original input xi−1 to obtain a
new information flow that passes to the following state. This
procedure can be expressed as

x̂i = τ (gi,3(xs
i )) + xi−1 (8)

where x̂i denotes the final updated features and gi,3(·) is the
convolution operation of the third 1 × 1 convolutional layer

in Fig. 3(c). Assuming there are M SRUs in each DRG,
the output GM

L of the Lth DRG can be formulated as

GM
L = hL(SM

L (SM−1
L (. . . S2

L(S1
L(GM

L−1)) . . .))) (9)

where [S1
L , S2

L , . . . , SM−1
L , SM

L ] denote the mapping function
of M SRUs in the Lth DRG. hL(·) is the convolution operation
after M SRUs (see in Fig. 2). GM

L−1 is the output of the
(L − 1)th DRG.

3) Adaptive Information Fusion Structure: Instead of
directly linking the output of previous states to the current state
with skip connections, we build long scaling skip connections
among these DRGs, which assign different scaling weights for
different states to pass more detailed information for highly
accurate prediction. The scaling weights can be deemed as the
part parameters of our FilterNet and trained adaptively. In our
proposed FilterNet, as shown in Fig. 2, the output x1 serves
as the first input for information fusion. Therefore, the output
of the first fusion step can be represented as

G̃M
1 = W 1

1 x1 + GM
1 (10)

where W 1
1 denotes the first scaling weight of x1 to the first

DRG and G̃M
1 is the output of the first fusion step. Supposing

there are T DRGs before the upscale module in the FilterNet,
each DRG has M SRUs, the output of the T th information
fusion G̃M

T can be expressed as

G̃M
T = W 1

T x1 +
T −1∑
t=1

W t+1
T G̃M

t + GM
T (11)

where the GM
T is the output of the T th DRG and the

[W 1
T , W 2

T , . . . , W T
T ] are the T scaling weights for the T th

fusion step. Benefiting from the SRU and AIFS, our network
can efficiently exploit the contextual information of the LR
input images and adaptively learn more useful features.

C. Upscale Module
For upscaling the LR input images to the desired spatial

resolution, in this work, we utilize one deconvolutional layer
to learn the upscaling filters. The deconvolution operation can
be regarded as an inverse process of the convolution operation.
In a sense, assuming that the stride of the input filter is s, it can
be found that upsampling with factor s by deconvolution is
the convolution operation with a fractional input stride 1/s.
Specifically, with the input G̃M

T , we first adopt a 3 × 3
deconvolutional layer to learn the upscale filters. For different
scale factors, we use the same kernel size with different strides
corresponding to the scale factors. The upsample operation is
performed as

U0 = u0(G̃M
T ) (12)

where u0(·) is the upsampling function, and U0 denotes the
upscaled HR features. Then, we use a convolutional layer with
a kernel size of 3 × 3 to extract the HR features

U1 = u1(τ (U0)) (13)

where u1(·) denotes the convolution operation for HR features
extraction, and U1 is the extracted features from U0. After-
wards, we only employ one DRG to learn the HR features and
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TABLE I

DETAILED SETTING OF EACH MODULE IN OUR PROPOSED NETWORK WITH SCALE FACTORS OF s (s = 2, 3, 4) FOR IMAGE SR

the shortcut connection without scaling weights to conduct the
residual mapping

U M
2 = u2(τ (U1))

Ũ M
2 = U M

2 + U0 (14)

where U M
2 and u2(·) are the output and mapping function,

respectively, of the DRG in the upscale module. Ũ M
2 is the

final learned HR residual features after the residual learning
operation. A convolutional layer with a kernel size of 3 × 3 is
performed as reconstruction layer to reconstruct the residual
HR image x̃H R

x̃H R = R(Ũ M
2 ) (15)

where R(·) is the reconstruction function. Finally, to subtract
the smooth area of the original LR input, the global residual
learning is performed on the residual between the estimated
HR residual image and the bicubic upsampled image to
improve the reconstruction performance. Therefore, the output
x̂H R of our proposed FilterNet can be expressed as

x̂H R = x̃H R + B(xL R) (16)

where B denotes the bicubic upsampling operation.

D. Loss Function
According to [48], solely utilizing L2 loss can fail to

recover sharp edges and lead to overly smooth results. L1 loss
provides better convergence than L2 loss for image SR. In our
experiments, we find that training the network with L1 loss can
achieve better performance both on PSNR and visual quality
than L2 loss. Therefore, we train our networks using L1 loss
instead of L2. The evaluation of this comparison is provided

in Section IV. Given a training set
{

x (i)
L R, x (i)

H R

}N

i=1
, where N

is the number of training patches and x (i)
H R is the ground truth

HR patch of the LR patch x (i)
L R , the loss function of the basic

FilterNet with the parameter set � is

L(�) = 1

N

N∑
i=1

�x (i)
H R − x̂ (i)

H R�1 (17)

IV. EXPERIMENTS

A. Datasets
In this work, we use 400 images from the training and

validation set of BSDS500 [49] and 800 images from the

training set of the DIV2K dataset [50], totaling 1200 images
without data augmentation for training our models. For test-
ing, we compare our models with recent state-of-the-art SR
methods on four popular benchmark datasets: SET5 [51],
SET14 [52], BSDS100 [49], and URBAN100 [18]. All exper-
iments are evaluated on the peak signal-to-noise ratio (PSNR),
the structural similarity (SSIM) index, and inference time.

B. Implementation Details
In our proposed FilterNet, apart from the deconvolutional

layer and the reconstruction layer, each convolutional layer
and dilated convolutional layer consists of 64 filters with the
stride of 1. The deconvolutional layer in our upscale module
consists of 64 filters with the strides corresponding to the scale
factors 2, 3, and 4. The reconstruction layer is a convolutional
layer that has one channel with stride 1 to reconstruct the HR
images. All of the weight layers except the reconstruction layer
are followed by the ReLU [47] as an activation function. The
detailed setting is summarized in Table I, where w, h denote
the image width and height, respectively.

In the training phase, the original images are first converted
to the YCbCr color space and only the Y-channel is processed.
LR training patches are obtained by down-scaling the HR
patches using bicubic interpolation with scale factors of 2, 3,
and 4. In each training batch, we randomly sample 32 patches
with the size of 120 × 120 without overlapping. The weights
were initialized by the method proposed in [53], and the
biases were initialized to zero. We implement our FilterNet
with the Caffe package [54] and optimize the models using
an Adam [55] optimizer. We set the momentum parameter
to 0.9 and the weight decay to 1e − 4. The initial learning
rate is set to 1e − 4 and decreased by a factor of 10 for
every 60 epochs in the training phase. The training of a single
FilterNet model can roughly take 2 days with a Titan Xp GPU.

C. Ablation Study
In this subsection, we first investigate the basic network

parameters of the proposed FilterNet: the number of DRGs
(denoted as T ), and the number of SRUs per DRG (denoted
as M). Then, we study the dilation rate schemes of these
dilated convolutional layers. Next, we analyze the effects of
the GSM and the AIFS. Finally, we discuss the performance
of L1 and L2 loss functions for training our models.

1) Investigation of T and M: To clearly show how the
parameters T and M affect the performance of FilterNet,
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Fig. 5. The comparisons of various FilterNets at different T and M
combinations in terms of PSNR and parameters for the scale factor of 3
on SET5 dataset. The green denotes the model of VDSR, while other colors
denote the models of FilterNet with different structures.

we fix the number of DRGs in upscale modules to 1. Then,
we change the number of DRGs in the front part and the
number of SRUs in the DRGs. With different numbers of
T and M , we obtain five networks, which are denoted as
T3M3, T4M3, T3M4, T5M3, and T6M2. We apply the trained
models on the SET5 dataset and then illustrate the PSNR
and parameters of these structures for 4× SR. We use the
performance of VDSR [22] as a reference. As shown in Fig. 5,
compared with VDSR, our proposed method has approxi-
mately 0.37 to 0.42 dB improvement. In addition, one can
see that, a larger T or M can achieve better performance,
which is mainly attributable to a deeper network caused by a
larger T or M . Additionally, the T6M2 architecture performs
better than T5M3 but has fewer parameters, which suggests
that the gains of our models are not only from the deep
depth but also from the richer representations and hierarchical
information fusion. Considering the trade-off between the
PSNR performance and parameters of these models, we adopt
the T6M2 as our baseline model, denoted as FilterNet_T6M2,
for the following experiments.

2) Study of Dilation Rate Schemes: We now turn our
attention to dilated convolution in the proposed FilterNet
for image SR. To demonstrate the effectiveness of dilation
convolution, we conduct experiments to reveal appropriate
dilation rate schemes for image SR. We use the baseline model
FilterNet_T6M2 with dilation rate r = 1 (no dilation), which
contains 6 DRGs and 2 SRUs in each DRG, as the reference.
Specifically, we conduct our experiments with several variants
on the following assignments:

(i) 1-2: For 6 DRGs, we divide them into 2 blocks, where
each block contains 3 DRGs. We set r = 1 for the first
block and r = 2 for the second block.

(ii) 1-2-3, 1-2-5: The 6 DRGs are divided into 3 blocks, and
each block consists of 2 DRGs. We fixed the first block
and second block with r = 1 and r = 2, respectively.
Then, we gradually change the dilation rate of the third
block as r = 3, 5.

TABLE II

RESULTS OF DIFFERENT VARIANT DILATION RATE SCHEMES
WITH A SCALE FACTOR OF 3. THE TEXT INDICATES

THE BEST PERFORMANCE

TABLE III

ABLATION STUDY OF GSM AND AIFS WITH THE SCALE FACTOR

OF 4. THE TEXT INDICATES THE BEST PERFORMANCE

(iii) 1-3-4: Based on (ii), we set r = 3 for the second block
and r = 4 for the third block to further expand the
receptive field of the network.

All of the trained models are compared on the SET14
and BSDS100 datasets with the scale factor of 3 and then
illustrated in Table II in terms of PSNR and SSIM perfor-
mance. With the same number of parameters, we can see
that increasing the receptive field size generally yields higher
performance compared to the baseline model. In addition, with
3 different dilation rates from 1-2-3 to 1-3-4, we observe
that using a larger dilation rate to expand the receptive
fields can consistently improve the performance. Since the
dilation rate scheme 1-3-4 achieves the best performance on
the two datasets compared to the other schemes, we select
the 1-3-4 scheme to be incorporated into our baseline model
FilterNet_T6M2 for our final network.

3) Study of GSM and AIFS: We now conduct detailed
analyses on the proposed components, i.e., the gated selective
mechanism (GSM) and the adaptive information fusion struc-
ture (AIFS), for a better understanding of our proposed Fil-
terNet. We fixed the basic design: 6 DRGs, 2 dilated residual
units per DRG, and dilation rate scheme 1-3-4. We then add
one of the GSM or AIFS to the basic architecture. We further
add both the components to the basic design, resulting in our
final network. Table III shows the ablation study of GSM and
AIFS with the scale factor of 4 in terms of PSNR, SSIM
and inference time on SET14. We observe that singly adding
one of the components into the network can achieve higher
performance on PSNR. In addition, the reconstruction speed
can be further accelerated by the two components. With both
components GSM and AIFS, our model can obtain higher
SSIM and the PSNR of 0.18 dB compared with the first
example network. To demonstrate that the GSM and AIFS
can make the networks learn more high-frequency information
for image detail recovery, we illustrate the visual comparisons
of edge maps produced by the four architectures for 4× SR.
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Fig. 6. Visual comparisons of edge maps produced by the four architectures for 4× SR: (a) ground truth, (b) original edge map of the ground truth image,
(c) w/o SRU or AIFS, (d) w/o AIFS, (e) w/o SRU, and (f) with both SRU and AIFS.

Fig. 7. The visualization of the feature maps in the SRU, where the first
two columns are the output of the two 3× 3 dilated convolutional layers, and
the third column are the feature maps of the last 1 × 1 convolutional layer in
the GSM. Top: the “butterfly” image from SET5, bottom: the “baby” image
from SET5.

As shown in Fig. 6, the network with SRU (Fig. 6(d)) or AIFS
(Fig. 6(e)) provide better local detailed information and clearer
boundaries than the network without the two components
in Fig. 6(c). We can obviously observe that Fig. 6(f) achieves
the best texture detail and sharpest edges with utilizing the
GSM and AIFS together in our network.

To demonstrate that our proposed method can adaptively
focus on high-frequency information in the training process,
we need to inspect the output of the internal layers in SRU,
as shown in Fig. 3(c), which includes two dilated convolutional
layers and the GSM. For a better understanding the adaptive
selection process, we visualize the feature maps of the first
3 × 3 dilated convolutional layers to show the extracted
features containing both abundant low- and high-frequency
components. Then, we illustrate the feature maps of the last
1 ×1 convolutional layers, which can be seen in the output of
our GSM. As illustrated in Fig. 7, the first two dilated convo-
lutional layers can effectively learn the contextual information
of the LR input with a larger receptive field. In addition,
in the third column of Fig. 7 (Fig. 7(c) and Fig. 7(f)),
we can obviously see that the output of the GSM contains
more edge detail and textures but fewer smooth low-frequency
components, which demonstrates that the proposed GSM can

Fig. 8. Convergence analysis of our proposed FilterNet with L1 and L2 loss
functions.

Fig. 9. Visual comparisons of the L1 and L2 loss functions utilized to train
our FilterNet for 3× SR.

effectively concentrate on the high-frequency information and
suppress the low-frequency information.

4) Discussion of the Loss Functions: In this subsection,
we discuss the loss functions for training our models. We first
train our FilterNet with L1 loss. Then, we change the L1 loss
function into L2 loss function to train our models. We visualize
the convergence process of the two training strategies on SET5
for 2× SR in Fig. 8. We observe that the L1 loss can achieve
a faster convergence speed and higher PSNR performance
compared with L2 loss. To demonstrate the image visual
quality of the two methods, in Fig. 9, we show the HR images
reconstructed by the models with L1 and L2 loss functions
for 3× SR. We find that training a network with L1 loss can
guarantee better image quality in image SR.

D. Comparisons With the State-of-the-Arts
1) Objective Evaluation: We evaluate our proposed Fil-

terNet with three commonly used image quality met-
rics: peak signal-to-noise ratio (PSNR), structural similarity
index (SSIM), and information fidelity criterion (IFC) [57].
We compare the proposed method for 2×, 3× and 4× SR with
10 state-of-the-art methods including A+ [15], SelfExSR [18],
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TABLE IV

QUANTITATIVE EVALUATION OF STATE-OF-THE-ART SR ALGORITHMS: AVERAGE PSNR AND THE CORRESPONDING STANDARD DEVIATION FOR
SCALE FACTORS 2, 3 AND 4. RED TEXT INDICATES THE BEST AND BLUE TEXT INDICATES THE SECOND BEST PERFORMANCE

TABLE V

QUANTITATIVE EVALUATION OF STATE-OF-THE-ART SR ALGORITHMS: AVERAGE SSIM/IFC FOR SCALE FACTORS 2, 3 AND 4.
RED TEXT INDICATES THE BEST AND BLUE TEXT INDICATES THE SECOND BEST PERFORMANCE

SRCNN [20], VDSR [22], DRCN [23], LapSRN [31],
DRRN [28], DSRN [33], RAN [37], and MS-LapSRN [32].
Since the models of LapSRN and MS-LapSRN trained with
4× samples can handle the upsample scales of 3×, we test
the two methods for 3× SR by using their 2-level models.
The results of DSRN [33] and RAN [37] are cited from
their corresponding papers. Table IV shows the evaluation
results in terms of PSNR and the corresponding standard

deviation (Stdev). We observe that our FilterNet achieves
comparable average PSNR performance against existing meth-
ods on all datasets. In addition, the standard deviations of
all methods mainly distribute between [2.5, 4.9] on different
datasets. With the same dataset, the Stdev of our proposed
FilterNet is very close to the compared state-of-the-art meth-
ods. This demonstrates that our method achieves as stable
performance as other methods on different datasets. In Table V,
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Fig. 10. Visual comparison of 3× SR on the SET14, BSDS100 and URBAN109 datasets.

we illustrate the evaluation results in terms of SSIM and
IFC on all datasets. We observe that our proposed method
performs favorably against the state-of-the-arts. Moreover, our
algorithm achieves superior IFC values on most datasets,
which has been claimed to be highly correlated with human
perception of image SR. In particular, compared with the
very deep models DRRN (up to 52 3 × 3 convolutional
layers) and MS-LapSRN (up to 84 3×3 convolutional layers),
the proposed FilterNet has a comparable quantitative perfor-
mance with a shallower structure (only 32 3×3 convolutional
layers).

2) Subjective Evaluation: To demonstrate the visual qual-
ity of our proposed method, we show the visual compar-
isons on the SET14, BSDS100 and URBAN100 for 3× SR
in Fig. 10 and 4× SR in Fig. 10. For the image “zebra”
from SET14 in Fig. 10, our method generates the HR image
with clearer strips than those of the results produced by
DRRN [28] and MS-LapSRN [32]. For the image “58060”
from BSDS100, we can obviously see that our proposed
method can produce the straightest and clearest lines compared
with the other methods. For 4× SR, as shown in Fig. 11, our
method can accurately produce textures, circles and parallel

straight lines, whereas other methods generate results that still
contain different extents of the fake information and noticeable
artifacts.

E. Inference Time
We present our inference time and compare it with the

state-of-the-art methods. All of the compared algorithms use
the original public codes from the authors. We evaluate the
runtime on the same machine with a 3.4 GHz Intel i7 CPU
(128G RAM) and 1 NVIDIA Titan Xp GPU (12G Memory).
Fig. 12 shows the trade-offs between the execution time and
the PSNR performance on the SET5 dataset for 2× SR.
Since the testing code of SRCNN [20] is implemented on
a CPU, we rebuild the model as well as the VDSR [22]
model in MatConvNet [58] with the same network parameters
for evaluating the runtime on a GPU. As shown in Fig. 12,
we can observe that SRCNN [20] achieves the fastest speed but
very low reconstruction performance. Our proposed FilterNet
can stride a balance between the reconstruction accuracy and
runtime, which outperforms LapSRN [31] by 0.34 dB and the
state-of-the-art method MS-LapSRN [32] by 0.08 dB with very
similar execution times.
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Fig. 11. Visual comparison for 4× SR on the SET14, and URBAN100 datasets.

Fig. 12. PSNR performance versus runtime (evaluated in seconds). The
results are evaluated on the SET5 dataset for 2× SR. The proposed FilterNet
balances between reconstruction accuracy and inference time.

V. CONCLUSION

In this paper, we propose an adaptive information filter-
ing network (FilterNet) for accurate and fast image super-
resolution. In contrast to the existing methods that adopt full
CNN to directly predict the HR images, the proposed FilterNet
concentrates on more useful features and adaptively filters the
redundant low-frequency information. The proposed FilterNet

employs cascaded dilated residual groups (DRG) which con-
sist of multiple selective residual units (SRU) with stacked
style. With the SRUs, the network can efficiently exploit the
contextual information of LR input images and adaptively
concentrate on more useful information for high-frequency
detail reconstruction. We present an adaptive information
fusion structure (AIFS), which builds adaptively weighted
skip connections among these DRGs to pass more useful
features and improve the pixel-wise fitting capacity of the
network. Comprehensive evaluations on benchmark datasets
demonstrate that our method achieves superior performance
compared with state-of-the-art methods in terms of quantitative
and qualitative evaluations with promising inference time.
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