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Recently, deep learning has made great achievements in the field of image inpainting, especially filling 

the large missing regions based on generative adversarial net (GAN). However, GAN is the model to cap- 

ture the data distribution rather than image content. Therefore, for the corrupted face image with large 

holes, it may generate a new image which is greatly different from the original one. To solve above prob- 

lem, we present a face inpainting network based on weighted face similarity (WFS-Net) to generate a 

better restoration. Firstly, according to the structural similarity index (SSIM), a weighted similar face set 

(WSFS) can be built to provide more reference information for the recovery of missing regions. And then, 

WFS-Net is designed to fill the damaged face image by exploring the relationship between the missing 

region and the available information, which include the known parts of the damaged image and its WSFS. 

Furthermore, a new loss function is presented in pixel level and texture level. The experimental results 

show that our proposed approach outperforms other state-of-the-arts. 

© 2019 Elsevier B.V. All rights reserved. 
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1. Introduction 

Image inpainting is the task to restore missing or damaged ar-

eas in a corrupted image, which has many applications in im-

age editing [1,2] , occlusion removing [3–5] and the restoration of

old photos [6] . For restoring images more realistically, many re-

searchers focus on this ill-posed inverse problem. 

Early inpainting methods are mainly defined as diffusion-based

inpainting and examplar-based inpainting. Diffusion-based inpaint-

ing [7,8] tends to diffuse the information around the boundary of

inpainting region into missing region by partial differential equa-

tion (PDE). However they may produce blurring artifacts when

inpainting the large missing regions. And in the exemplar-based

inpainting methods [5,9,10] , they try to copy the suitable image

patches into the missing regions, which may be not visually con-

tinuous in complex structure. Moreover, both these two kinds of

methods are not able to capture high-level semantics. 

In recent years, considering that the generative adversarial net-

work (GAN) [11] can predict the missing areas with better visual

quality, it is widely applied in the image inpainting, which con-

sists of the global GAN based methods [12–14] , local GAN based
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ethods [15,16] and the GANs with both global data distribution

nd local details [17–19] . For example, Pathak et al. [12] and Yeh

t al. [13] complete the corrupted image by global data distribu-

ion, Guo et al. [16] fill the missing regions by patch details, while

u et al. [19] propose the inpainting network by both global image

ontext and small region around the completed area. Nevertheless,

ince GAN is the method that captures the data distribution [11] ,

he generated face images may have greatly different contents with

he original ones. Furthermore, the exist inpainting networks usu-

lly fill the missing areas by the known information of damaged

mage, it is difficult to predict the large missing holes accurately. 

Considering that the face is one of the most important human

iological features, it is better to obtain the face inpainting results

hat similar with the original ones. In order to restore the dam-

ged face image accurately, the face inpainting can be considered

s a filling of pixels for the damaged image, rather than a capture

f data distribution. Therefore, the structure of fully convolutional

etwork rather than GAN is chosen to fill the damaged face im-

ges, for it can directly work on the pixel level. In this paper, we

ropose a face inpainting network based on weighted face simi-

arity (WFS-Net), in which both the known parts of the damaged

ace images and other similar faces are adopted as the available

nformation. Firstly, according to the image structure, a weighted

imilar face set (WSFS) is generated to provide more reference in-

ormation for the recovery of missing regions. And then, WFS-Net

s used to fill the big holes of damaged face images. Furthermore,

https://doi.org/10.1016/j.neucom.2019.12.079
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
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or better training, a new loss function is designed to focus on the

ifferences between the recovered images and the original ones in

ixel level and texture level. 

In summary, the contributions of our work can be described as

ollows: 

• In order to restore the damaged face image accurately, we

design a weighted facial similarity based inpainting network

(WFS-Net) to fill the large missing regions of face image in pixel

level and texture level, in which the weighted similar face set

(WSFS) is presented to provide more reference information. 

• In this paper, a WSFS is generated to provide more prior simi-

lar faces for the recovery of missing regions. Furthermore, these

similar faces are weighted as appropriate selections of refer-

ence information. Then, WFS-Net is used to explore the rela-

tionship between the missing region and more available infor-

mation in WSFS to fill the large missing regions of face images

accurately. 

• To restore the face images realistically and accurately, a new

loss function is presented in view of pixel level and texture

level. Here, L2 loss is used for the restoration of image con-

tent in pixel level, while local binary pattern (LBP) is adopted

to constrain the training of inpainting model in texture level. 

This paper is organized as follows. In Section 2 , some works

bout image inpainting and face similarity measurements is intro-

uces. In Section 3 , the details of proposed algorithm will be pre-

ented. In Section 4 , the experimental results are shown and ana-

yzed. And finally, the conclusion is summarized in Section 5 . 

. Related work 

.1. Image inpainting 

Early image inpainting algorithms are divided into diffusion-

ased inpainting [7,8,20–22] and examplar-based inpainting

5,9,10,23] . As one of the pioneer diffusion-base works, Shen

t al. [7] propose a variational model to fill the areas involving

he recovery of edges, which is closely connected to the total

ariation (TV) restoration model. And then, Chan et al. [8] propose

 curvature-driven diffusions (CDD) based inpainting model to

mprove TV inpainting on the connectivity principle. Although,

he diffusion-based inpainting methods can ensure local intensity

moothness, they may tend to produce blurring artifacts when

lling the large missing regions. For the examplar-based inpainting

ethods, they can synthesize plausible stationary textures. Cri-

inisi et al. [5] propose an examplar-based inpainting algorithm

or removing large objects in a visually plausible way. Meur et al.

9] introduce a examplar-based inpainting framework, in which a

oarse version of the input image is improved by the hierarchical

uper-resolution algorithm. Kumar et al. [10] present a formulation

f exemplar-based image inpainting, which maintains better visual

onsistency in the inpainted region by the simulated annealing

lgorithm. However, these examplar-based methods may make

ritical failures in visually continuity in the region with complex

exture or image structure. 

Over the past few years, due to the rapid development of GANs,

AN-based methods have shown encouraging inpainting results.

ome methods [12–14,24,25] tend to pay more attention to global

ata distribution of the filled image, in which the data distribution

re considered as an important inpainting constrain to recognize

lobal consistency of the scene. Here, Pathak et al. [12] present an

nsupervised visual feature learning algorithm driven by context-

ased pixel prediction, which can generate the contents of an arbi-

rary image region conditioned on its surroundings. Subsequently,

eh et al. [13] consider the semantic inpainting as a constrained
mage generation problem, in which the closest encoding of a cor-

upted image is searched by the context and prior losses. Since

hese global-based inpainting methods may ignore the local de-

ails of the corrupted image, many local-based inpainting net-

orks [15,16,26,27] are proposed to focus on the patch data dis-

ributions or the small regions around the completed area. Here,

uo et al. [16] embed the progressive inpainting policy into the

mage inpainting to complete missing regions naturally. Yu et al.

26] present a generative image inpainting system to complete im-

ges with free-form mask and guidance. And in order to combine

oth the global semantics and the local context, the joint local

nd global networks [17–19,28–30] is presented. Here, Yu et al.

19] present a deep generative model-based approach is proposed,

hich can not only synthesize image structures but also utilize

urrounding image features to make better predictions. Yang et al.

30] propose a multi-scale neural patch synthesis approach based

n image content and texture constraints to preserve contextual

tructures. Although these GAN based methods are able to improve

ace inpainting results by capturing same data distribution, it may

e greatly different in contents with the original faces. As one of

he most important human biological features, it is crucial to ob-

ain similar inpainting results. 

.2. Face similarity measurement 

Many existing methods are used to explore the facial simi-

arity by the features [31–34] and the nonlinear genetic traits

35–37] . Rahim et al. [31] test the resemblance of faces with fisher

inear discriminant algorithm. Luo [32] uses the person-specific

cale-invariant feature transform (person-specific SIFT) and a

imple nonstatistical matching strategy to solve face recognition

roblems. Deng et al. [33] develop a transform-invariant principal

omponents analysis (TIPCA) technique which aims to accurately

haracterize the intrinsic structures of the human face. Although,

hese facial feature based methods have been extensively inves-

igated in face similarity, they still exist some limitations. As for

mage inpainting, it is hard to capture the complete facial features

or the large holes in the corrupted face image. 

Some face similarities are explored according to the nonlinear

enetic features. Zhou et al. [35] propose a new kinship metric

earning (KML) method to learn a coupled deep similarity met-

ic, in which the images with kinship relation are pulled close.

ahpod et al. [36] propose a multiview hybrid combined sym-

etric and asymmetric distance learning network for facial sim-

larity. Liu et al. [37] propose a status-aware projection learning

SaPL) method for facial image based parent-child kinship verifica-

ion. However, there exists instability in the similarity of kin in ap-

earance, especially in the face image with large missing regions. 

In order to put more attention on image structure, SSIM is in-

roduced in our work for more robust and effective selection of

imilar faces. Furthermore, because of the superiority of local bi-

ary patterns (LBP) in human face image processing [38–42] , it is

lso adopted as the texture feature to constrain the training of in-

ainting model in our work. 

. The proposed method 

In this section, the proposed WFS-Net will be elaborated. Firstly,

n overview of WFS-Net is provided, in which the synthesis of

he missing contents is introduced briefly. Then, the generation of

SFS is analyzed, which are considered as the prior information of

amaged images. Furthermore, the network structure of WFS-Net

ill be described in detail, in which the WSFS and damaged im-

ges are used as the inputs. Finally, the loss function of WFS-Net

nd the filling of damaged face images will be discussed. 
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Fig. 1. The architecture of MFS-Net. 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Mask matrix. 
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3.1. WFS-Net 

To restore the face images accurately, the convolutional network

is considered in our work as the inpainting method for it can di-

rectly work on the image content rather than data distribution.

However, because of the local convolutional kernel, it is not ef-

fective to restore the corrupted image with large missing regions

[19] . Motivated by this reason, a face inpainting network based

on the weighted face similarity is proposed, in which the similar

faces are introduced as the reference information. The architecture

of WFS-Net shows in Fig. 1 , in which the proposed algorithm is

divided into two stages. The first stage is the generation of WSFS
Fig. 2. The generation of weight
 = { c 1 , . . . , c i , . . . , c n } , in which n is the size of the Similar Face Set

SFS). In this stage, the similar faces are firstly selected from a face

ataset. Considering that there are different similarities between

ach damaged face and the face images in C , the weight assign-

ent for each face image in WSFS is necessary to reduce the neg-

tive influences caused by these differences. The second stage is

he design of WFS-Net. In this process, for providing the reference

nformation, both the WSFS and the damaged image are consid-

red as the inputs of WFS-Net. When the WFS-Net is trained, the

eatures of both the pixel level and the texture level are considered

n the loss function on this model. Finally, the missing regions are

lled with the co-located regions of the generated image from the

FS-Net. 

.2. Generation of weighted similar face set 

For providing the prior information for inpainting network, the

SFS is collected for each damaged face image. Here, in order to

void an extra face dataset, the training samples are divided into

wo parts: the face dataset � for the generation of WSFS and the

raining sample for WFS-Net. The selection of the SFS shows in

ig. 2 , in which � = { ϕ 1 , . . . , ϕ i , . . . , ϕ N } is the face dataset to pro-

ide the reference information for a damaged image. 

It’s remarkable that before the similarity computation, a pre-

rocessing for the face images in face dataset is crucial, which

akes sure that the comparison of the similarity is only between

he available regions of the damaged image and the co-located re-

ions of face images in face dataset �. Firstly, a mask matrix is de-

ned to indicate the missing parts, whose size equals the damaged

mage. An example of mask matrix is shown in Fig. 3 , in which the

issing regions are equal to 0, and the available regions are equal

o 1. The equation of this preprocess shows as follows: 

 i = ϕ i � M (1)

here � denotes the element-wise multiplication. M is the mask

atrix, ϕi is the face image in �. And I i is the masked image of the

asked face dataset I , in which the missing regions of the dam-

ged image and the corresponding regions of the face images in �

re valued 0. 
ed similar face set (WSFS). 
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Fig. 4. The structure of weighted facial similarity based inpainting network (WFS-Net). 
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After the pre-processing, similarities between the damaged im-

ge and the images in � can be calculated for the generation of a

SFS. Here, the similarities of the damaged image and the masked

mages in the masked face dataset I are guided by the measure of

SIM for its effectiveness on similarity estimation, which can com-

are two face images from luminance, contrast and structure. Ad-

itionally, it is worthy of note that the color information of these

imilar faces is unnecessary, which may have a negative impact on

he color consistency of filled image. For avoiding the negative im-

act caused by the color information of SFS, only the similarities

f gray-scale map between the damaged image g d and the images

n G are calculated as follows: 

 (g d , g i ) = 

(2 u g d + V 1 )(2 σg d g i + V 2 ) 

(u 

2 
g d 

+ u 

2 
g i 

+ V 1 )(σ 2 
g d 

+ σ 2 
g i 

+ V 2 ) 
(2)

here 

 i = Gray (ϕ i � M) (3)

ere, u g d and u g i are the mean intensity of g d and g i . σg d 
and σg i 

re the standard deviations of these two faces g d and g i . V 1 and V 2 

re constants to avoid instability when (u 2 g d 
+ u 2 g i 

) or (σ 2 
g d 

+ σ 2 
g i 
)

re very close to zero. After the calculation of similarity, n most

imilar faces R = { r 1 , . . . , r i , . . . , r n } are selected as the SFS of the

amaged image and the corresponding similarity matrix is S =
 s 1 , . . . , s i , . . . , s n } . Furthermore, considering the different similari-

ies between the damaged face and its SFS, normalized weights of

he similarity matrix S should be assigned for each similar face im-

ge, which can be calculated as follows: 

 i = 

s i ∑ n 
a =1 (s a ) 

(4) 

here s i is the similarity of the i th similar face in SFS and W =
 w 1 , . . . , w i , . . . , w n } is the weight matrix. Finally, the WSFS for a

raining sample C = { c 1 , . . . , c i , . . . , c n } is achieved: 

 i = w i × r i (5) 

here c i is the i th weighted similar face in WSFS. For each train-

ng sample, a WSFS can be found. Assuming that the size of the

raining samples is Num , the WSFS for all training sample is C =
 C 1 , . . . , C i , . . . , C Num 

} T , which size is Num × n . 

.3. WSFS based face inpainting network 

The design of WFS-Net is inspired by the fully convolutional

etwork, which takes the input of arbitrary size and produces

orrespondingly-sized output with efficient inference and learning

43] . However, because of the local convolutional kernels, convolu-

ional layers are not an effective method for filling the large miss-

ng regions [19] . Aiming at this problem, the WSFS is introduced

s the reference information for restoring the damaged face images

ealistically. Here, the structure of inpainting network designed for
 128 × 128 image is shown as Fig. 4 , in which the successive con-

olution layers and deconvolution layers are used to replace the

perator of upsampling and downsampling for the more precise

utputs [43] . In the network, the downsampling layers are used to

xtract the feature of the available information which consist of

amaged image and its WSFS. And the upsampling is used to pre-

ict the content of missing region according to the extracted fea-

ures. In this processing, the relationship between the large hole

nd the available parts is obtained. Here, we use five convolutional

ayers with kernel size of 5 × 5 for downsampling and feature ex-

raction, which can be represented as: 

 i = τ ( f i (D i −1 )) , (0 < i ≤ 5) (6)

here f i is the i th function of feature extraction. And D i is the ex-

racted features of f i . The input is represented with D 0 , which in-

ludes the damaged image and its WSFS. Furthermore, in the part

f downsampling and feature extraction, the Leaky Rectified Linear

nit (Leaky ReLU) [44] is used as activation function for keeping

he negative input by assigning none zero output, which is repre-

ented by τ . In the part of image restoration, five deconvolutional

ayers with kernel size of 5 × 5 are used for upsampling, which

re denoted as follows: 

 i = μ(h i (U i −1 )) , (0 < i ≤ 5) (7)

here h i is the i th deconvolutional layer for image restoration. U i 

s the feature maps of h i . In Fig. 4 , D 5 can be considered as the

nput U 0 in the network of image restoration. These deconvolu-

ional layers in part of image restoration are activated by ReLU for

he sparse representations and the efficiency [45] , which is repre-

ented by μ. 

Benefiting from the structure of feature extraction and the im-

ge restoration in WFS-Net, our network can explore the relation-

hip between the damaged images and its WSFS effectively. 

.4. Loss function 

To restore the face images realistically and accurately, the WFS-

et is trained by the loss function, which is combined with the

ffective reconstruction ( L 2 ) loss and the texture information. The

 2 loss is defined as follows: 

 2 = 

‖ 

x ∗ − x ‖ 2 

W × H × C 
(8) 

here x ∗ is the output of WFS-Net and x is the original face im-

ge. C, H and W are the height, width and channel size of face

mage. L 2 loss is widely used in the image inpainting and it can

apture the overall structure of the missing region in relation to

he context [12] . However, since L 2 tends to average together the

ifference between the output and the ground truth, it may ignore

ome texture information. Therefore, for the sharper texture, we

ntroduce the texture feature in the loss function. Here, LBP is con-

idered as the texture feature for its superiority in face recognition
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Fig. 5. The comparison of the generative images of WFS-Net and the filled images: 

(a) the original images, (b)the masked images, (c) the generated images and (d) the 

filled images. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. The relationship between the size of face dataset N and τ ( N ). 
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[42] . After the calculation of LBP, the results T x ∗ and T x are obtained

to represent the texture information of generative face image and

original ones, which have the same size with the damaged image.

For getting the same data range with the L 2 loss, the normalization

is essential, which is shown as follows: 

N(i, j) = 

T (i, j) − min (T ) 

ma x ( T ) − min (T ) 
(9)

where T is LBP matrix and N is the result of normalization. Fi-

nally, the normalized LBP feature is introduced in the loss function,

which is calculated as follows: 

L = L 2 + 

H ∑ 

i =1 

W ∑ 

j=1 

(N x ∗ (i, j) − N x (i, j)) 2 (10)

where W is the width of face image and H is the hight of the im-

age. N x ∗ and N x are the normalized LBP feature of generated face

image and its corresponding face respectively. 

3.5. Filling of damaged face image 

After achieving the generated images from the WFS-Net, a post-

processing is necessary to restore the damaged image. And the

filled face image can be obtained by: 

ˆ x = M � x d + (1 − M) � x ∗ (11)

where x d is the damaged image. x ∗ is the image generated by the

proposed WFS-Net. Finally, ˆ x is the result of filled image. � is the

element-wise multiplication. Fig. 5 is the comparison of the gener-

ative images of WFS-Net and the filled images. 

4. Experimental results 

In order to show the validity of WFS-Net, we evaluate it on the

dataset Celeb Faces Attributes Dataset (CelebA) [46] and Labeled

Faces in the Wild (LFW) [47] . Then, an appropriate size of face

image datasets � is selected to balance the computational com-

plexity and the similarity of face images in WSFS. Additionally, we

carry out extensive experiments to discuss the importance of ref-

erence information and the texture feature in loss function. Fur-

thermore, the proposed face inpainting method is compared with

several state-of-the-art algorithms, which are also based on deep

learning. Finally, we display some results about occlusion removal. 
.1. Dataset and missing regions 

CelebA is a large-scale face attributes dataset with 202,599 face

mages. In this paper, 20 0 0 images are used for testing the trained

odel. 400 face images are used as face image database � for

uilding the WSFS and providing the reference information, in

hich the size selection of � is discussed in the following section.

ther 200,199 face images in CelebA are used as training samples.

urthermore, in order to show the effectiveness of our model, we

lso evaluate it on LFW dataset, which consists of 5749 face im-

ges. It illustrates that our trained model has also achieved the

mprovements on other face dataset. In this paper, the face images

re cropped to 128 × 128. 

In addition, the proposed method is tested in the different

issing regions as shown in Fig. 5 , which is 25% and 50% in im-

ges. As for the 25% missing regions, the missing parts are in the

enter of the image (25% center mode). And as for the 50% missing

egion, the missing parts are on the center of images (50% center

ode), the left of images (vertical mode) and the up of images

horizontal mode), respectively. Additionally, we also test the pro-

osed WFS-Net by removing the irregular occlusion. 

For the experimental results, peak signal-to-noise ratio (PSNR),

SIM and semantic similarity [29] are used as the metrics of fill-

ng results. PSNR represents the difference of pixel level. SSIM is

he estimates of holistic similarity between the original image and

he filled image. Furthermore, identity distance is calculated by the

penFace [48] , which is the similarity of two faces in semantic. A

maller identity distance means a higher similarity of two faces,

hile a higher identity distance means that these two faces are

ot similar. 

.2. The size selection of face image datasets �

In Fig. 2 , � = { ϕ 1 , . . . , ϕ i , . . . , ϕ N } is the dataset to provide the

imilar faces for a damaged image. The size of face dataset is im-

ortant for the selection of similar faces. Here, we assumed the

ace image dataset � with the size of N . If N is too large, it will

ake the inpainting difficult to realize because of the enormous

omputational complexity of similar face selection. And if the size

f the face dataset is too small, it is hard to find the similar faces.

n order to find an appropriate size for face dataset, we selected

00 damaged faces randomly from the training sample as a Train-

ng Subset (TS), which are used to observe the relationship be-

ween the similarities of SFS and the size of �. Here, the size of

is N while the size of SFS is n and n = 4 . We calculate the simi-

arities of each damaged face image in TS and the images in �, and

he similarity matrix S = { S 1 , . . . , S p , . . . , S 500 } T is generated with

ize of 500 × n , in which S p = { s (p, 1) , . . . , s (p,q ) , . . . , s (p,n ) } is the

FS of p th image in TS. And the equation shows as follows: 

(S , N) = 

∑ 500 
p=1 ( 

∑ n 
q =1 s (p,q ) ) 

500 × n 

, n ≤ N (12)
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Fig. 7. The comparison of the results of the NRF_NT, the NRF, the NT and the pro- 

posed MFS-Net: (a) Input: the masked image; (b) GT: the ground truth image; (c) 

NRF_NT: the results with neither reference information nor texture feature; (d) 

NRF: the results without reference information WSFS; (e) NT: the results without 

texture information LBP; (f) WFS-Net: the results of proposed method, in which the 

WSFS is used as the reference information and the LBP is introduced in the loss 

function as the texture information. 

Table 1 

Comparison between CE [12] , SemGAN [13] , CA [19] and FRRN [16] and the 

proposed algorithm on CelebA dataset. 

Missing Regions PSNR (dB) SSIM Identity 

Distance 

Center 

Mode 

25% CE 26.01 0.87 0.88 

SemGAN 21.85 0.80 1.36 

CA 21.51 0.83 1.02 

FRRN 27.24 0.90 0.67 

Ours 28.59 0.92 0.65 

50% CE 21.47 0.71 1.16 

SemGAN 17.95 0.62 1.63 

CA 20.94 0.69 1.42 

FRRN 20.78 0.70 1.14 

Ours 24.26 0.81 0.93 

Vertical 

Mode 

50% CE 18.94 0.71 0.35 

SemGAN 13.54 0.62 0.80 

CA 17.99 0.71 0.32 

FRRN 18.80 0.72 0.42 

Ours 19.54 0.76 0.26 

Horizontal 

Mode 

50% CE 18.30 0.68 0.70 

SemGAN 16.15 0.65 0.88 

CA 17.73 0.69 0.63 

FRRN 18.66 0.72 0.61 

Ours 19.80 0.76 0.48 

i

S

H  

t  

g

4

 

f  

e  

a  

e  

Fig. 8. Center-mode comparisons with the state-of-the-arts on
n which, 

 = { S 1 , . . . , S p , . . . , S 500 } T 

= 

⎡ 

⎢ ⎣ 

s (1 , 1) . . . s (1 ,q ) . . . s (1 ,n ) 

. . . . . . . . . . . . . . . 

s (p, 1) . . . s (p,q ) . . . s (p,n ) 

s (500 , 1) . . . s (500 ,q ) . . . s (500 ,n ) 

⎤ 

⎥ ⎦ 

(13) 

ere, τ is the mean of the similarity matrix S 500 ×n . Fig. 6 shows

he relationship between N and τ ( N ), and it shows that 400 is a

ood choice for N . 

.3. Ablation study 

In this paper, we introduce the similar faces as the reference in-

ormation for recovering the faces accurately. In order to show the

fficiency of WSFS, we compare the results of WFS-Net with WSFS

nd the results without reference information. In addition, consid-

ring that L loss is the average together the difference and it is
2 

 CelebA: CE [12] , SemGAN [13] , CA [19] and FRRN [16] . 
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Fig. 9. Comparisons of vertical-mode and horizontal-mode results with the state-of-the-arts on CelebA: CE [12] , SemGAN [13] , CA [19] and FRRN [16] . 

Fig. 10. Comparisons with the state-of-the-arts on LFW: CE [12] , SemGAN [13] , CA 

[19] and FRRN [16] . 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11. The results of removing occlusions by our proposed method. 

t  

b

4

 

p  

n  

t  

i  

i  

g  

p  

t  

p  

t  

t  

g  

m  
easy to ignore the texture information, a feature LBP is used for a

sharper texture of the face images filled by WFS-Net. Therefore, we

also compared the results only using the L 2 loss with the results

using not only L 2 loss but also texture information. And Fig. 7 show

part of the results, in which GT is the ground truth image, NRF_NT

means the results without reference information and without tex-

ture feature, NRF is the results predicted without reference infor-

mation WSFS, NT is the results that do not consider texture infor-

mation and the last column is the results filled by the proposed

WFS-Net. From this figure, we can obviously see that the results of

the proposed method are much realistic and have more shaper tex-
ure. Especially in the magnified areas, the proposed method can

e found to recover more details of filled face images. 

.4. Comparisons with the state-of-the-arts 

In order to evaluate our proposed WFS-Net, the model is com-

ared with context-encoder (CE) [12] , semantic image inpainting

etwork (SemGAN) [13] , generative inpainting with contextual at-

ention (CA) [19] and full-resolution residual network (FRRN) [16] ,

n which CE and SemGAN are the global GAN based methods, FRRN

s the local GAN based method and CA is the method combined

lobal image context and local details. For the datasets, the same

re-processing steps are used before the training of our model and

he comparisons. Table 1 lists the comparison results of face in-

ainting, in which 20 0 0 test images with the size of 128 × 128 are

ested. From this table, the proposed WFS-Net outperforms than

he other algorithms. As shown in Figs. 8 and 9 , the proposed al-

orithm is more realistic and more accurate in the different mask

ode. Furthermore, as shown in Fig. 10 , we also test our trained
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odel on LFW dataset, which illustrate that it is also effective on

ther face dataset. 

.5. Occlusion removal 

In a face image, it may be occluded by the sunglasses, hats or

ther objects, which will prevent us fully observing the details of

his face. Therefore, one of the main task of image inpainting is to

emove unwanted occlusion. Here, we also show some examples

f occlusion removal in Fig. 11 , in which it can be seen that our

ethod can fill the obscured face image naturally. 

. Conclusion 

In this paper, a face inpainting network WFS-Net based on the

ace similarity is proposed for better restoration of the corrupted

mage with large holes, which focuses on filling a damaged face

mage that similar with the original one. And in order to restore

he face realistically and accurately, a weighted similar face set is

ntroduced into the inpainting network as prior information. And

onsidering that L 2 loss tends to average together the difference

etween the output and the ground truth, which may ignore some

exture information, we also introduce a texture feature LBP into

he loss function for shaper texture. Finally, we carry out exten-

ive experiments and compared the proposed WFS-Net with other

tate-of-the-art algorithms on pixel-level, holistic similarity and se-

antic similarity. And the experimental results demonstrated the

uperior performance on face inpainting. 
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