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a b s t r a c t 

In this paper, a local activity measurement of the clipped and normalized variance or standard deviation 

is proposed to drive anisotropic diffusion and relative total variation (RTV) to work better for structural 

preservation. Firstly, two novel edge-stop functions are introduced for our local activity-driven anisotropic 

diffusion (LAD-AD) to efficiently remove severe artifacts and preserve the fine geometry structures in 

HEVC-compressed depth images. Secondly, we propose a simple yet effective local activity-driven RTV 

(LAD-RTV) with the way of the product between gradient and the local activity measurement for im- 

age smoothing and scale representation. Meanwhile, both color-sharing information and each-channel 

discriminative information are considered, which are significant to color image edge-preserving but not 

included in the RTV model. Besides, LAD-RTV leverages the form of the division of gradient and the local 

activity measurement to resolve the problem of general image de-noising by regarding the noises as the 

duplicate texture elements. Experimental results have validated that the proposed LAD-AD can greatly 

improve the precision of the HEVC-compressed depth image and the quality of its synthesized image. 

Additionally, large numbers of results have shown our LAD-RTV is superior to several existing methods. 

© 2018 Elsevier B.V. All rights reserved. 
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1. Introduction 

Image filtering is an effective way to improve the performance

of many applications, such as edge detection and image editing

[1–9] . Since different types of images have different character-

istics and different applications have different requirements, im-

age filtering algorithms should be designed for each case prop-

erly. For example, depth images having smooth regions divided by

sharp boundaries represent scene’s geometry structures. The high-

quality boundaries should be preserved after depth image filtering,

because they will strongly affect 3D video coding efficiency and

the quality of view synthesis with depth image-based rendering

(DIBR). Therefore, the quality of the virtual-view images should be

enhanced after filtering contaminated depth images. Meanwhile,

the precision of depth image should be kept at least or even be

greatly improved. For natural images, when we want to remove

image noises, we need to preserve both image’s structures and tex-
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ural details at the same time. If we want to apply image smooth-

ng, we should remove texture details but keep major structures. 

Although there are a large number of works for image filtering

5–14] , most of these algorithms tend to be computationally com-

lex, which are not well suitable for practical applications. Mean-

hile, their algorithms are specifically designed for one model,

hich lose the sight of generalization, so we need to re-design

 new algorithm for each new model. Based on the above ob-

ervations, our motivation is whether a robust statistic measure-

ent can be easily inserted into some models to adaptively control

odel’s trade-off parameter between data term and regularization

erm. Meanwhile, this statistic measurement should not signifi-

antly increase computational complexity. Besides, this measure-

ent can be easily put into most of low-level image processing

odel without complicated expert design. It is generally known

hat standard deviation is a good measurement on the degree of

ispersion for a set of data. Because each image patch’s standard

eviation can be quickly computed through matrix operations, it

ill not significantly increase the complexity of the filtering. Con-

equently, we introduce a local activity measurement of variance
r standard deviation to drive different models for better solutions. 

https://doi.org/10.1016/j.sigpro.2018.11.012
http://www.ScienceDirect.com
http://www.elsevier.com/locate/sigpro
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sigpro.2018.11.012&domain=pdf
mailto:hhbai@bjtu.edu.cn
https://doi.org/10.1016/j.sigpro.2018.11.012
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In this paper, a clipped and normalized local variance or stan-

ard deviation is leveraged as the local activity measurement for

mage smoothing and denoising. In particular, the ratio between

radient and the clipped local activity could locate the noises and

acilitate image denoising. In our first framework, we develop a ro-

ust local activity-driven anisotropic diffusion framework (LAD-AD)

nd apply it for HEVC-compression artifact removal of the contam-

nated piece-wise smooth images such as compressed depth im-

ges. More importantly, there are several issues to be noticed for

AD-AD. For example, the clip function plays a key role in control-

ing image diffusion of LAD-AD. Meanwhile, choosing local variance

r standard deviation results in different edge-stop function forma-

ions. Furthermore, the updated way of the local activity measure-

ent has great impacts on the algorithm’s performances. 

Our second framework is a local activity-driven relative total

ariation (LAD-RTV), which not only uses the local activity but also

akes the color-sharing information and each-channel discrimina-

ive information into consideration. There are two schemes for our

AD-RTV. The first scheme is a local activity-driven RTV for im-

ge smoothing and image representation in different scale-spaces,

here the RTV is divided by the clipped local activity, which em-

hasizes image salient contours. Additionally, the color-sharing in-

ormation and each-channel discriminative information used in our

AD-RTV can provide more discriminative information than RTV.

he second scheme of LAD-RTV is designed to remove additive

hite Gaussian noises by treating image noises as duplicate tex-

ures when using a ratio between gradient and the local activity to

dentify the location and the amplitude of the noises. 

The rest of this paper is organized as follows. Firstly, some

orks on image denoising and image smoothing are reviewed in

ection 2 . Secondly, we introduce a robust local activity-driven

nisotropic diffusion and a local activity-driven relative total vari-

tion in Section 3 and 4 respectively. After that, experimental re-

ults are presented in Section 5 . Finally, we conclude our paper in

ection 6 . 

. Related works 

Because our work involves two popular low-level image pro-

essing problems, we first give a review of general image denois-

ng and image smoothing respectively. After that, we look back on

 special class of image denoising for compressed depth image. 

.1. General image denoising 

Image denoising is often separated into two categories:

eighted filtering and optimization-based methods. For the first

lass, there are several well-known algorithms, such as bilateral

ltering and its extensions. For example, bilateral filtering is a

eneral image filtering technique [15] , which can remove image

oises and preserve sharp boundaries. Due to its high computa-

ional costs, fast bilateral filtering is developed to accelerate image

ltering in [16] . For visual-pleasing image denoising, an optimally

eighted bilateral filter is formed by minimizing the oracle mean-

quared-error to get optimal weights [17] , whose performance is

ompetitive to the non-local means filter [18] . Recently, image lo-

al entropy is used to automatically direct filter’s range parameter

elections of bilateral filtering [19] . Based on the density of con-

ected components, an image activity detector is built up for a

aster noise removal filtering [20] , as compared to a classic median

ltering. 

Anisotropic diffusion [21] belongs to the second class of image

enoising algorithm. In [13] , the relationship between anisotropic

iffusion and robust statistics is analyzed. In [14] , a new class of

ractional-order anisotropic diffusion equations is introduced for
oise removal. To preserve edges and fine details, both local gra-

ient and variance are incorporated into the diffusion model to

emove annoying noises effectively [10,11] . Most recently, a reg-

larization model is leveraged to adaptively adjust the diffusivity

ased on the image gradient magnitude [22] . It is well-known that

he total variation model can be viewed as a special case of the

nisotropic diffusion with specific edge-stop function. Next, we re-

iew several works about total variation model. In a spatially adap-

ive total variation model, image denoising strength is differentially

ssigned to district regions and different bands [23] . In [24,25] ,

patially clustering-aware total variation is used, or total variation’s

eighted parameter is controlled by spatial difference curvature to

esolve image super-resolution problem. 

Next, we will look back to medical image denoising, which is

lways used as a pre-processing for computer-aided diagnosis sys-

em. Recently, CT image denoising and MRI image denoising have

een reviewed in [26,27] . Here, several newest works will be dis-

ussed. Because there exist information redundancies for MR im-

ges in PCA domain, only noise principle component is removed,

hile other components are kept to improve the signal-to-noise

atio [28] . To accurately diagnose disease from MRI images, a group

f filters is merged with an image segmentation technique to re-

uce image noises [29] . Meanwhile, image grid segmentation is

tilized to automatically choose the filtering parameters for semi-

lassical signal analysis-based denoising [30] . Because low-dose CT

mages often incur annoying noises and artifacts, both generative

dversarial loss and perceptual loss are introduced into the train-

ng of CNN-based denoising model [31] . 

.2. Image smoothing 

Image smoothing, also known as texture removal, is another

mportant technique for many low-level and high-level applica-

ions [2,32,33] , because this technique provides a lot of meaningful

tructural boundary clues. The family of weighted filtering meth-

ds is often achieved by a weighting method within small or large

atches. For example, the guided image filter is a fast and non-

pproximate linear time algorithm [4] . Another efficient method

s rolling guidance filtering [7] , which is a fast iterative bilateral

ethod. In order to achieve real-time tasks, domain transform is

sed for a high-quality edge preserving filtering [5] . 

Different from image weighted filtering for image smoothing,

he family of optimization-based methods always faces a non-

onvex yet complex problem. In [8] , both static guidance and dy-

amic guidance are jointly leveraged to achieve robust guided

mage filtering, which is formulated as a non-convex optimiza-

ion problem. In [3] , a multi-scale image decomposition method

s conducted to form the edge-preserving smoothing operator in a

eighted least square optimization framework. In [2] , an L0 gra-

ient minimization optimization framework globally controls how

any non-zero gradients are kept in the smoothed image for tex-

ural removal. By taking advantage of a statistic diversity of gra-

ient between texture patches and structure patches, a relative

otal variation (RTV) framework is presented to preserve image

tructures [1] . In this method, windowed inherent variation (WIV)

nd windowed total variation (WTV) are combined to discriminate

tructures from textures, while an optimization problem is formu-

ated to extract image main structure. Afterward, another efficient

pproach tries to use region covariance for image smoothing [6] .

ecently, mutually guided image filter (muGIF) [34] defines a new

easurement for mutual response to manage structural similarity

etween two input images for image smoothing and scale-space

ltering, etc. Although these methods achieve some excellent per-

ormances for structure-preserving smoothing, there are still some

horny problems, such as inefficient texture removal, severe bound-

ry blurring, and the inaccuracy of edge localization after filtering. 
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2.3. Depth image denoising 

Although depth image filtering is similar to image process-

ing problems described above, there some differences between

them. On the one hand, depth image denoising should keep sur-

face smoothness within objects to satisfy depth image piece-wise

smooth characteristics, whose ambition is partly similar to textu-

ral removal. On the other hand, depth denoising algorithms should

also preserve depth image fine details like general image denois-

ing. Many methods have been explored to remove severe artifacts

in the compressed depth images so that the quality of the syn-

thesized virtual image could be improved. In [35] , a trilateral fil-

tering method is treated as an in-loop filter to reduce depth cod-

ing artifacts. This method employs three filtering weights, which

respectively come from the spatial domain, depth range domain,

and color range domain. In [36] , an adaptive depth truncation

filter (ADTF) is presented to restore sharp object boundaries of

depth images from blurring. In [37] , a candidate-value-based depth

boundary filtering is developed by selecting an appropriate candi-

date value to replace each unreliable pixel based on spatial correla-

tion and statistical characteristics. In [38] , two-stage filtering (TSF)

scheme is presented to reduce depth coding artifacts by using bi-

nary segmentation-based depth filtering and Markov Random Field

(MRF). Lately, an iterative range-domain weighted filtering (IRWF)

[9] is used to improve the quality of compressed depth images

without the use of spatial domain weights by iteratively filtering

in the range domain. These methods greatly reduce image artifacts

of synthesized virtual images caused by compressed depth image,

but they often tend to change depth images too much. Up to now,

simultaneously improving the accuracy of the depth image and its

synthesized image quality by filtering compressed depth image is

still a challenging problem and should be further studied. 

3. Local activity-driven anisotropic diffusion 

Generally, depth images are characterized with piece-wise

smooth regions segmented by sharp boundaries. However, depth

boundaries usually suffer from various compression artifacts af-

ter compression, which will badly affect the quality of view syn-

thesis [35–38] . In this paper, we propose a local activity-driven

anisotropic diffusion (LAD-AD) method to mitigate coding artifacts

of depth images, which is written as: 

∂I 

∂t 
= ∇ · (c(||∇ I|| , K) ∇ I) , (1)

where ∇I is the gradient of image, ∇ · is the divergence opera-

tor, and K is the local activity image got from a HEVC-compressed

depth image I . The discrete solution of Eq. (1) can be written as: 

I t+1 
i 

= I t i + λ
∑ 

j∈ N i 
c(||∇ I t i j || , K 

t 
i ) ∇ I t i j , (2)

where I 0 
i 

= I i in the first iteration, and K 

t 
i 

is a clipped and normal-

ized local activity for pixel i at the t -th iteration, which will be de-

fined later. Two novel local activity-based edge-stop functions are

defined as follows: 

c(||∇I t i j || , K 

t 
j ) = exp 

( 

−
( ||∇I t 

i j 
|| 

ρ1 K 

t 
i 

)2 
) 

, (3)

c(||∇I t i j || , K 

t 
j ) = exp 

(
−
( ||∇I t 

i j 
|| 2 

(ρ2 ) 2 K 

t 
i 

))
, (4)

where ρ1 and ρ2 are the diffusion parameters, e.g., ρ1 = 30 and

ρ2 = 

√ 

300 in the default setting. Note that K 

t 
i 

is squared in Eq. (3) ,

but not in Eq. (4) . The ratio of gradient and the local activity is

used to capture where the coding artifacts exist in the compressed
epth image. Moreover, the diffusion parameters are adaptively

djusted according to this ratio, i.e., larger diffusion parameters

re assigned to more severely distorted pixels. Therefore, pixels

ith larger local activity would receive more anisotropic diffusion

rom neighboring pixels than pixels with smaller activity under the

onstraint of the edge-stop function. This contributes to removing

oisy pixels and preventing blurry regions from being heavily dif-

used. 

Next, we will introduce a clipped and normalized local activity

easurement K 

t 
i 
. First, we calculate a local mean value Ī t 

i 
and stan-

ard deviation v t 
i 

of the 8-connected neighborhood around each

ixel, which is written in Eq. (5) . Here, N i denotes the 8-connected

eighborhood of pixel i . Note that our anisotropic diffusion uses 4-

onnected neighborhood in the regularization term for compressed

epth image filtering, so only 3x3 window size is considered to get

he local activity rather than other larger window size. 

 

t 
i = [ 

1 

9 

((I t i − Ī t i ) 
2 + 

∑ 

j∈ N i 
(I t j − Ī t i ) 

2 )] 
1 
2 , ̄I t i = 

1 

9 

(I t i + 

∑ 

j∈ N i 
I t j ) (5)

A clipped version of v t 
i 
, denoted as V 

t 
i 
, is given as: V 

t 
i 

= t l , if

 ≤ v t 
i 
< t l ; V 

t 
i 

= v t 
i 
, if t l ≤ v t 

i 
< t h ; V 

t 
i 

= t h , if t h ≤ v t 
i 
, which is the

lip function. Here, t l and t h are two pre-defined truncated param-

ters of the clip function to control the degree of diffusion by mak-

ng anisotropic diffusion to work within a certain range of local ac-

ivity, e.g., t l = 1 , t h = 30 . t l is the minimum truncated value, while

 h is the maximum truncated value. This clip function restricts the

ocal activity not to be large or small, which makes each pixel have

 valid local activity measurement. If we use variance as local ac-

ivity measurement to adjust image diffusion strength, too large

istance between the largest variance v 2 a and the smallest variance

 

2 
b 

will make some pixels’ diffusion not to work or heavily diffused.

o see this, we first use a fact that (v 2 a − v 2 
b 
) is (v a + v b ) times of

(v a − v b ) . When v a + v b > 1 , (v 2 a − v 2 
b 
) is more than one times of

(v a − v b ) . (v 2 a − v 2 
b 
) = (v a − v b ) if v a + v b = 1 . (v 2 a − v 2 

b 
) is less than

(v a − v b ) if v a + v b < 1 . Generally, the distance between v a and v b
s far larger than 1, so (v 2 a − v 2 

b 
) is immensely larger than (v a − v b ) ,

o we choose the standard deviation as the local activity to driven

mage filtering. After calculating the local activity, V 

t 
i 

is normalized

y max ( V 

t ), which is the maximal value across the image in Eq. (6) .

¯
 

t 
i = V 

t 
i /max (V 

t ) , 0 ≤ t ≤ (m − 1) (6)

Finally, K 

t 
i 

is updated to make iterative results more stable

rom V̄ 

t 
i 

for every l iterations, which is defined as: K 

t 
i 

= V̄ 

t 
i 
, if

od(t, l) = 0 ; K 

t 
i 

= V̄ 

t −mod(t ,l) 
i 

, if mod ( t, l ) � = 0. Here, mod denotes

he modulo operator, m be the maximal number of iterations,

nd the updating interval l is chosen as l ∈ [1, m ]. In the fol-

owing, the fixed local activity-driven anisotropic diffusion us-

ng Eq. (3) as edge-stop function is denoted as FLAD-AD. And

he time-updated local activity-driven anisotropic diffusion with

q. (3) is labelled as TLAD-AD. Meanwhile, the periodically local

ctivity-driven anisotropic diffusion based on edge-stop function

f Eq. (3) is referred to as PLAD-AD. Similarly, when Eq. (4) is

sed, three other methods are denoted respectively as FLAD-AD (I),

LAD-AD (I), and PLAD-AD (I). When l is set to be 1, the proposed

ethod becomes TLAD-AD. If l is larger than 1, but small than m ,

t reduces to PLAD-AD. However, if l is set to be m , it is changed

nto FLAD-AD. 

There are three previous works [10–12] , which are similar to

he proposed method, but they are different from each other

n some aspects. Several discrepancies between our LAD-AD and

10,11] are listed as follows: we introduce a clipped function to re-

trict the value of local activity; the local activity is calculated by

he interval-updated way; and our method uses the division be-

ween gradient and local activity, but the works of Chao and co-
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orkers [10,11] employ the multiplication way. The discrepancies

etween the proposed LAD-AD and [12] are listed as follows: 

1. In this paper, the clipped and normalized local activity in a

periodically updated way is used to drive the anisotropic dif-

fusion adaptively. The detailed operation of activity used in

[12] is very complex, and the window for their activity is of-

ten set to be larger than 3 × 3. In this paper, we aim to achieve

fast depth filtering for distorted image compressed by HEVC

coder, so we use 3 × 3 window centered at pixel D i to get the

8-connected standard deviation v i instead of the variance. If

the variance is used, a small variance can be easily dominated

by the large variance, which leads to a little contribution to

the diffusion. Another reason is that our LAD-AD uses the 4-

connected neighborhood for anisotropic diffusion so that both

standard deviation and the local gradient is calculated accord-

ing to the same neighboring regions. But, the standard devia-

tion within the 8-connected neighborhood is chosen to get the

local activity rather than within 4-connected neighborhood in

order to make LAD-AD robust to image noises. 1 

2. A clipped function is used for the local activity to make

diffusion stable during anisotropic diffusion, because pixels

with very large local activity always make local activity-driven

anisotropic diffusion useless for pixels with small local activity

measurements. 

3. During the iterative diffusion, the updated activity is used to

control the degree of diffusion. Generally, the fixed local activ-

ity often tends to blur image discontinuities. The time-updated

local activity can always preserve the sharp boundaries, but it

often requires extra calculation of the local activity in every it-

eration. The interval-updated activity is a good alternative, es-

pecially when some practical applications require fast filtering. 

. Local activity-driven relative total variation 

Inspired by the literature of Xu et al. [1] , we propose a lo-

al activity-driven relative total variation for image smoothing (de-

oted as LAD-RTVs) for color images. Given a color image I c 
0 

=
 R 0 , G 0 , B 0 ] , our LAD-RTVs is written in Eq. (7) , where I c denote

he smoothed color image, which has three channels [ R , G , B ].

he former term in Eq. (7) is data term, and the latter one is our

AD-RTVs regularization term. These two terms are balanced by

, which controls the degree of smoothness for the solution I c of

ur LAD-RTVs. The clipped and normalized local activity measure-

ent v r p for red-channel is obtained according to Eq. (5) as well as

q. (6) . Then, v g p as well as v b p can be got like v r p . The superscript

f v r p indicates this local activity belongs to red channel, while its

ubscript denotes the position of p in the image. Other symbols

an be labelled in this manner. v c p is the maximum value of the

lipped and normalized local activity measurements along image

hannel dimension. The t l and t h for LAD-AD are denoted as th l 
nd th h in the LAD-RTV model for the clear usage in the following.

he default values of these two parameters for image smoothing

re set to be th l = 1 and th h = 10 . 

arg min 

R, G, B 

{∑ 

p 

(R(p) − R 0 (p)) 2 + 

∑ 

p 

(G(p) − G 0 (p)) 2 

+ 

∑ 

p 

(B (p) − B 0 (p)) 2 
}

+ λ·

⎧ ⎪ ⎨ 

⎪ ⎩ 

√ √ √ √ 

∑ 

p 

(D r ) x (p) 
(L r) x (p)+ ε

v r p 
·
( D r ) c x (p) 

(L r) c x (p)+ ε
v c p 

+ 

√ √ √ √ 

∑ 

p 

(D r ) y (p) 

(L r) y (p)+ ε
v r p 

·
(D r ) c y (p) 

(L r) c y (p)+ ε
v c p 
1 More discussion can be found from https://github.com/mdcnn/Local-Activity- 

riven-Filtering. 

g

w  

a  
+ 

√ √ √ √ 

∑ 

p 

(Dg) x (p) 
(L g) x (p)+ ε

v g p 
·

(Dg) c x (p) 
(L g) c x (p)+ ε

v c p 
+ 

√ √ √ √ 

∑ 

p 

(Dg) y (p) 

(L g) y (p)+ ε
v g p 

·
(Dg) c y (p) 

(L g) c y (p)+ ε
v c p 

+ 

√ √ √ √ 

∑ 

p 

(Db) x (p) 
(L b) x (p)+ ε

v b p 

·
(Db) c x (p) 

(L b) c x (p)+ ε
v c p 

+ 

√ √ √ √ 

∑ 

p 

(Db) y (p) 

(L b) y (p)+ ε
v b p 

·
(Db) c y (p) 

(L b) c y (p)+ ε
v c p 

⎫ ⎪ ⎬ 

⎪ ⎭ 

(7) 

(D r ) x (p) · (D r ) c x (p) = 

∑ 

q ∈ N p 
g p,q | (∂ x R) q | ·

∑ 

q ∈ N p 
g p,q | 

∑ 

k ∈ 1 , 2 , 3 
(∂ x I 

c (k )) q / 3 | , 

D r ) y (p) · (D r ) c y (p) = 

∑ 

q ∈ N p 
g p,q | (∂ y R) q | ·

∑ 

q ∈ N p 
g p,q | 

∑ 

k ∈ 1 , 2 , 3 
(∂ y I 

c (k )) q / 3 | (8) 

L r) x (p) · (L r) c x (p) = | ∑ 

q ∈ N p 
g p,q (∂ x R) q | · | 

∑ 

q ∈ N p 
g p,q 

∑ 

k ∈ 1 , 2 , 3 
(∂ x I 

c (k )) q / 3 | , 

L r) y (p) · (L r) c y (p) = | ∑ 

q ∈ N p 
g p,q (∂ y R) q | · | 

∑ 

q ∈ N p 
g p,q 

∑ 

k ∈ 1 , 2 , 3 
(∂ y I 

c (k )) q / 3 | (9) 

Our discriminatively color windowed total variation (DCWTV)

easures along each axis for red channel are respectively written

n Eq. (8) . Our discriminatively color windowed inherent variation

DCWIV) measures along each axis for red channel are respectively

resented in Eq. (9) . In most cases, pixels around edges have a

igher value of local activity than in relative other non-edge re-

ions, such as fine detail regions. By dividing both v r p / v 
g 
p / v b p and

 

c 
p in Eq. (7) , the LAD-RTVs regularization term for the edge pix-

ls becomes smaller than others, so these pixels will have fewer

ontributions to the LAD-RTVs term in relative to the non-edge re-

ions, which results in that more edges will be preserved. As com-

ared to RTV [1] , the proposed LAD-RTVs in Eq. (7) will further

moothen the detailed textures, but image salient structures are

eft. Due to the non-convexity of Eq. (7) , its solution cannot be di-

ectly obtained. As described in [1,39] , an objective function with a

uadratic term as the penalty can be optimized linearly. The LAD-

TVs term for red-channel can be decomposed into a quadratic

art and a non-linear part. Thus, the square of LAD-RTVs term for

ed-channel in the x -direction can be re-written as: 

∑ 

p 

(D r ) x (p) 
(L r) x (p)+ ε

v r p 
·

(D r ) c x (p) 
(L r) c x (p)+ ε

v c p 

= 

∑ 

p 

∑ 

q ∈ N p g p,q ·| (∂ x R) p | 
(L r) x (p)+ ε

v r p 
·

∑ 

q ∈ N p g p,q ·
| ∑ k ∈ 1 , 2 , 3 (∂ x I c (k )) p | 

3 

(L r) c x (p)+ ε
v c p 

= 

∑ 

p 

∑ 

q ∈ N p 

g p,q ·| (∂ x R) p | 
(L r) x (p)+ ε

v r p 
·

g p,q ·
| ∑ k ∈ 1 , 2 , 3 (∂ x I c (k )) p | 

3 

(L r) x (p)+ ε
v c p 

≈
∑ 

p 

∑ 

q ∈ N p 
(g p,q ) 

2 · 1 

(L r) x (p) + ε

· 1 

| (∂ x R) p | + ε
· 1 

v r p 
· (∂ x R) 2 p ·

1 

(L r) c x (p) + ε

· 1 

| ∑ 

k ∈ 1 , 2 , 3 (∂ x I c (k )) p | 
3 

+ ε
· 1 

v c p 
· (∂ x R) 2 p , (10) 

 p,q = exp(− (x p − x 2 q ) + (y p − y q ) 2 

2 σ 2 
) , (11) 

here g p,q is a Gaussian weighting function with variance σ = 3 ,

nd ( x p , y p ) is the location of image pixel p . This equation can be
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further rewritten as: √ √ √ √ 

∑ 

p 

(D r ) x (p) 
(L r) x (p)+ ε

v r p 
·

(D r ) c x (p) 
(L r) c x (p)+ ε

v c p 
≈

∑ 

p 

s r x,p · c r p · (∂ x R) 2 p , (12)

where 

c r p = 

1 √ 

v r p ∗ v c p 
, (13)

s r x,p = 

∑ 

q ∈ N p 
g p,q · 1 √ 

((L r) x (p) + ε) · (| (∂ x R) p | + ε) 
·

1 √ 

((L r) c x (p) + ε) · ( | 
∑ 

k ∈ 1 , 2 , 3 (∂ x I c (k )) p | 
3 

+ ε) 
. 

(14)

Similarly, the LAD-RTVs term for red-channel in the y -direction can

be written as: √ √ √ √ 

∑ 

p 

(D r ) y (p) 

(L r) y (p)+ ε
v p 

·
(D r ) c y (p) 

(L r) c y (p)+ ε
v c p 

≈
∑ 

p 

s r y,p · c r p · (∂ y R) 2 p , (15)

where 

s r y,p = 

∑ 

q ∈ N p 
g p,q · 1 √ 

((L r) y (p) + ε) · (| (∂ y R) p | + ε) 
·

1 √ 

((L r) c y (p) + ε) · ( | 
∑ 

k ∈ 1 , 2 , 3 (∂ y I c (k )) p | 
3 

+ ε) 
. 

(16)

The LAD-RTVs term for green-channel and blue-channel can be de-

fined similarly. Finally, we re-write Eq. (7) in the form of matrix in

the first iteration as follows: 

arg min 

R(1) , G(1) , B (1) 

( V R ( 1 ) − V R ) 
T 
( V R ( 1 ) − V R ) 

+ ( V G (1) − V G ) 
T 
( V G (1) − V G ) + ( V B (1) − V B ) 

T 
( V B (1) − V B ) 

+ λ
[ 
( V R ( 1 ) ) 

T 
(
G 

r 
x 

)T 
S r x C 

r G 

r 
x V R ( 1 ) + ( V R ( 1 ) ) 

T 
(
G 

r 
y 

)T 
S r y C 

r G 

r 
y V R ( 1 ) 

]
+ λ

[ 
( V G ( 1 ) ) 

T 
(
G 

g 
x 

)T 
S g x C 

g G 

g 
x V G ( 1 ) + ( V G ( 1 ) ) 

T 
(
G 

g 
y 

)T 
S g y C 

g G 

g 
y V G ( 1 ) 

]
+ λ

[ 
( V B ( 1 ) ) 

T 
(
G 

b 
x 

)T 
S b x C 

b G 

b 
x V B ( 1 ) + ( V B ( 1 ) ) 

T 
(
G 

b 
y 

)T 
S b y C 

b G 

b 
y V B ( 1 ) 

]
(17

where V R , V G , and V B are respectively the vectors of R 0 , G 0 , and B 0 .

In addition, the symbols in Eq. (17) for red-channel will be intro-

duced in the following, and the symbols of other channels can be

labelled similarly. G 

r 
x and G 

r 
y are the Toeplitz matrices from the dis-

crete gradient operators using forward difference for red-channel.

S r x , S 
r 
y , and C r are the diagonal matrices for red-channel, whose di-

agonal values are S r x [ i, i ] = s r 
x,i 

, S r y [ i, i ] = s r 
y,i 

, and C r [ i, i ] = c r 
i 
. 

To minimize Eq. (17) , we take the derivative respectively w.r.t

V R (1), V G (1), and V B (1), and then set them to be zero. Finally, the

solutions to the minimization of Eq. (17) can be written as: 

 R = [ E + λ(( G 

r 
x ) 

T 
S r x C 

r G 

r 
x + (G 

r 
y ) 

T 
S r y C 

r G 

r 
y ] V R (1) , 

 G = [ E + λ(( G 

g 
x ) 

T 
S g x C 

g G 

g 
x + (G 

g 
y ) 

T 
S g y C 

g G 

g 
y ] V G (1) , 

 B = [ E + λ(( G 

b 
x ) 

T 
S b x C 

b G 

b 
x + (G 

b 
y ) 

T 
S b y C 

b G 

b 
y ] V B (1) , (18)

where E is the identity matrix. 

Given the initial image I c 
0 

= [ R 0 , G 0 , B 0 ] , the iterative optimiza-

tion procedure of our LAD-RTVs is specifically presented as fol-

lows: 
1. In each iteration, Eqs. (14) and (16) are used to calculate s r x,p

and s r y,p in order to get matrices S r x (t − 1) and S r y (t − 1) for

red-channel. Similarly, we can get matrices S 
g 
x (t − 1) , S g y (t − 1) ,

S b x (t − 1) , and S b y (t − 1) . According to Eq. (13) , C r (t − 1) can be

obtained. In the first iteration, S r x (0) and S r y (0) are calculated

from R 0 . Otherwise, S r x (t − 1) and S r y (t − 1) are obtained from

R(t − 1) , whose vector form is V R (t − 1) . In this way, S 
g 
x (t − 1) ,

S 
g 
y (t − 1) , S b x (t − 1) and S b y (t − 1) can be calculated. 

2. Given S r x (t − 1) , S r y (t − 1) , G 

r 
x (t − 1) , and G 

r 
y (t − 1) , the vector

of V R ( t ) can be calculated in each iteration according to Eq. (19) .

In the similar way, we can get V G ( t ) and V B ( t ). Note that V R , V G ,

and V B are fixed during iteration. 

3. After ℵ times iterations with step (1–2), V R ( ℵ ), V G ( ℵ ), and

V B ( ℵ ) are re-arranged into a matrix I ℵ = [ R ℵ , G ℵ , B ℵ ] with size

M × N × 3, which is the final output image. 

 R (t) = [ E + λ( G 

r 
x ( t − 1) 

T 
S r x (t − 1) C r (t − 1) G 

r 
x (t − 1) 

+ G 

r 
y (t − 1) 

T 
S r y (t − 1) C r (t − 1) G 

r 
y (t − 1))] −1 V R (19)

As compared with RTV [1] , which is specifically designed for
mage smoothing, our LAD-RTV framework can be used for not
nly image smoothing but also image denoising. Next, we intro-
uce our LAD-RTV denoising model (denoted as LAD-RTVd) in de-
ail. Given a noisy image I c 

noisy 
= [ R 0 , G 0 , B 0 ] , our LAD-RTVd is given

n Eq. (20) . The solution of LAD-RTVd in Eq. (20) can be obtained
n the t -th iterative step similarly according to the derivation for
AD-RTV, which is presented in Eq. (21) , where W 

r is the diagonal

atrix and its p -th diagonal value is 
√ 

v r p · v c p . In this way, W 

g and

 

b can be got similarly. The default values of th l and th h for de-
oising with LAD-RTVd are respectively set to be 4 and 30. Just as
he denoising of LAD-AD, because the product of RTV and normal-
zed and clipped standard variation could capture the locations of
he noises in the contaminated image, the detected noisy pixels are
lways smoothed by LAD-RTVd to achieve image denoising. This
omes from a fact that gradient information always contains noise
radient change except for boundary change, but a local standard
eviation is usually a more stable statistic measure in relative. 

rg min 
R, G, B 

[∑ 

p 

(R(p) − R 0 (p)) 2 + 

∑ 

p 

(G(p) − G 0 (p)) 2 + 

∑ 

p 

(B (p) − B 0 (p)) 2 
]

+ λ ·
{ √ ∑ 

p 

(D r ) x (p) · v r p 
(L r) x (p) + ε

· (D r ) c x (p) · v c p 
(L r) c x (p) + ε

+ 

√ ∑ 

p 

(D r ) y (p) · v r p 
(L r) y (p) + ε

· (D r ) c y (p) · v c p 
(L r) c y (p) + ε

+ 

√ ∑ 

p 

(Dg) x (p) · v g p 
(L g) x (p) + ε

· (Dg) c x (p) · v c p 
(L g) c x (p) + ε

+ 

√ ∑ 

p 

( ( D g) y (p) · v g p 
(L g) y (p) + ε

· (Dg) c y (p) · v c p 
(L g) c y (p) + ε

+ 

√ ∑ 

p 

(Db) x (p) · v b p 
(L b) x (p) + ε

· (Db) c x (p) · v c p 
(L b) c x (p) + ε

+ 

√ ∑ 

p 

(Db) y (p) · v b p 
(L b) y (p) + ε

· (Db) c y (p) · v c p 
(L b) c y (p) + ε

} 

(20)

 R (t) = [ E + λ[ (G r x (t − 1)) 
T 

S r x (t − 1) W 

r (t − 1) G r x (t − 1) 

+ (G r y (t − 1)) 
T 

S r y (t − 1) W 

r (t − 1) G r y (t − 1)] −1 V R ;
 G (t) = [ E + λ[ (G g x (t − 1)) 

T 
S 

g 
x (t − 1) W 

g (t − 1) G g x (t − 1) 

+ (G g y (t − 1)) 
T 

S 
g 
y (t − 1) W 

g (t − 1) G g y (t − 1)] −1 V G ;
 B (t) = [ E + λ[ (G b x (t − 1)) 

T 
S b x (t − 1) W 

b (t − 1) G b x (t − 1) 

+ (G b y (t − 1)) 
T 

S b y (t − 1) W 

b (t − 1) G b y (t − 1)] −1 V B (21)

In the RTV model [1] , whether a pixel is judged as a texture

ixel or a structural pixel depends on the measurements of the

TV and WIV within a patch. Thus, the RTV model smoothes all

he textural pixels so as to extract image structures from textures.

owever, our LAD-RTVd judges whether and how much a pixel be-

ongs to a noisy pixel based on a combination of local activity mea-

urement and gradient, so LAD-RTVd prefers to smoothen noisy

ixels detected by local activity and gradient, rather than all the
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Fig. 1. (a-f) are several depth maps of different scenes from Middlebury, (g) HEVC-compressed depth image with QP = 41, (h) the close-ups of the depth images filtered by 

TLAD-AD with different ρ1 for (g) except for the ground truth, (i) the close-ups of the depths filtered TLAD-AD with different parameters of th l and th h for (g). 
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extural pixels. Therefore, our LAD-RTVd can maintain more de-

ailed textures than RTV for image denoising. 

Note that the LAD-RTVs reduces to discriminatively color

TV (denoted as DC-RTV), when 

√ 

v r 
i 
· v c 

i 
= 1 , 

√ 

v g 
i 
· v c 

i 
= 1 , and

 

v b 
i 

· v c 
i 

= 1 for each pixel i . Our DC-RTV could preserve more

tructures than RTV, which will be validated later, because both

olor-sharing information and single-channel discriminative infor-

ation are used in our model. From Eq. (13) , it can be clearly seen

hat LAD-RTV employs a multiplication way between local activ-

ty 
√ 

v r p · v c p and gradient in the x -direction for red-channel. On

he contrary, LAD-RTVd uses a division manner of local activity
 

v r p · v c p and gradient in the x -direction for red-channel. For the 

ther channels, they share the similar expression. 

. Experimental results and analysis 

In this section, we show extensive results to demonstrate the

erformance of the proposed frameworks. First, we first introduce

he parameter setting, 1 after which our LAD-AD is applied to arti-

act removal of HEVC-compressed depth images. Then, we validate

he efficiency of the proposed LAD-RTVs on image smoothing and

cale representation. Finally, our LAD-RTVd is compared with sev-

ral denoising methods to demonstrate its novelty. 

.1. Parameter setting 

Several depth maps of different scenes from Middlebury 2 are

sed to analyze the parameter selection for HEVC-compressed

epth image filtering, as displayed in Fig. 1 (a–f). Meanwhile,

everal different color images in Fig. 2 (a–f) from the McMaster

ataset 3 are used to observe the performance of LAD-RTVd with

ifferent parameters. As well all know, the diffusion parameter

lays a vital role in image denoising, so we use TLAD-AD as an

xample to see how depth images change after filtering with dif-

erent diffusion parameters. From Fig. 1 (g–h), it can be observed
2 http://vision.middlebury.edu/stereo/data/ 
3 http://www4.comp.polyu.edu.hk/ ∼cslzhang/CDM _ Dataset.htm 

s  

r  

t  

v  
hat the filtered depth images tend to be blurry, when diffusion pa-

ameter ρ1 is set too large, e.g., ρ1 = 40 or 100. At the same time,

oding artifacts can’t be well removed from the HEVC-compressed

epth image, if ρ1 is too small, e.g., ρ1 = 10 or 20. Moreover, the

erformance of TLAD-AD always is robust to noise and not to be

ver-smoothed but sharp when ρ1 = 30 . Based on these observa-

ions, we choose ρ1 = 30 in the proposed TLAD-AD 

1 . t l and t h are

wo parameters in the clip function to truncate the local activity in

he proposed anisotropic diffusion. From Fig. 2 (g, i), we see that

ltered depth images become to be more smooth or less sharp,

hen t h is set to be lower, e.g., t h = 25 , and vice versa. If we fix

he parameter, e.g., t h = 40 , TLAD-AD tends to make more discon-

inuities preserved, as t l is set to be smaller, e.g, t h = 0 . 05 , and vice

ersa. From above, it can be known that both t l and t h can’t be too

arge yet too small. In our simulation, t l and t h are chosen to be 1

nd 30, because image smoothness and image structural preserva-

ion should be well balanced. 

In the LAD-RTVd 

1 , the parameters of th l and th h have enor-

ous impacts on image denoising. When we change th l from low

o high, as shown in Fig. 2 (h), non-boundary regions of the de-

oised image become more smooth and are less affected by noise.

he LAD-RTVd-filtered images tend to have more details as th h is

djusted from 20 to 40, but some structures of noisy are kept.

herefore, th l in LAD-RTVd can be chosen from 1 to 4, and th h are

estricted to be less than 40 but larger than 20. To trade-off image

moothness and insensitivity to noise structure, we choose th l to

e 4 and th h to be 30 for LAD-RTVd in default. 

.2. Compressed depth image filtering with LAD-AD 

We use four standard multi-view-plus-depth sequences: Nokia’s

ndo_Dancer (U), NICT’s Shark (S), Nagoya University’s Cham-

agne_Tower (C) (in which the first 250 frames of these three se-

uences are tested) and HHI’s Book_Arrival (B) (in which the whole

equences with 100 frames are tested). The depth maps of these

equences are compressed by HEVC-v16.8 with quantization pa-

ameter (QP) chosen as 31, 33, 35, 37, 39 and 41, respectively. In

he simulations, the 1D-fast mode of 3D-HEVC (HTM-DEV-2.0-dev3

ersion) is used to synthesize the virtual middle view using two

http://vision.middlebury.edu/stereo/data/
http://www4.comp.polyu.edu.hk/~cslzhang/CDM_Dataset.htm
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Fig. 2. (a-f) are different color images from the McMaster dataset, (g) the noisy color image and its close-up, (h) the close-ups of the denoised images filtered by LAT-RTVd 

with different parameters of th l and th h for (g) . 
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views of uncompressed texture images and compressed depth im-

ages (filtered or non-filtered). 

Generally, the direct way of iterative termination for our LAD-

D uses Mean Square Error (MSE) δ between two latest iterative

images as the iterative stop criteria. For example, when δ is set to

be very small as 0.0 0 01, the corresponding TLAD-AD is denoted as

TLAD-AD-1. If δ equals to 0.001, we denote it as TLAD-AD-2. How-

ever, this stop criteria doesn’t work well for compressed depth im-

ages filtering with the LAD-AD. This will be verified in the follow-

ing. The alternative way is to use the fixed iteration number as

the termination condition for compressed depth images with fixed

QP, because quantized depth image with fixed QP always has the

same level coding artifacts and the iteration number always affects

the filtering time. For FLAD-AD, TLAD-AD, PLAD-AD, FLAD-AD (I),

and PLAD-AD (I), λ is 0.25, and the fixed number of iteration is

11 when QP is lower than 37, which are the experimental values.

Otherwise, the number of iteration is 21. For PLAD-AD and PLAD-

D (I), the interval is 5 when QP = 31, 34, 35, but the interval l is

set to be 10 if QP = 37, 39, 41. In our experiment, all the sequences

are set with the fixed parameters ρ1 and ρ2 for HEVC-compressed

depth filtering, as mentioned above. Note that we use the itera-

tion number to control the strength of artifact removal, i.e., more

artifacts would be removed, as more iterations are updated. 

In order to validate the efficiency of the proposed LAD-AD, our

filtering results are compared with the ones of BF [40] , JTF [41] ,

IRWF [9] , ADTF [36] , and TSF [38] . For both filtered depth im-

ages and corresponding synthesized virtual images (the middle

view of two reference views), peak signal noise ratio (PSNR), struc-

tural similarity (SSIM), and image sharpness (ISS) [42] , are taken as

three objective quality evaluation metrics. 

From Table 1 , it can be clearly observed that FLAD-AD, TLAD-

D, PLAD- AD, FLAD- AD (I), and PLAD- AD (I) have better perfor-

mance than TLAD-AD-1 and TLAD-AD-2. It indicates that using the

fixed iteration number as the termination condition is superior to

the MSE δ between two latest iterative images as the iterative stop

criteria, when depth images are compressed with fixed QP. In ad-

dition, FLAD-AD (I) and PLAD-AD (I) have more stable results than

FLAD-AD, TLAD-AD, and PLAD-AD. The performances of FLAD-AD

and TLAD-AD as well as PLAD-AD are different, and the sharpness

of TLAD-AD is more than PLAD-AD, but TLAD-AD requires to up-

date the local activity in each step, so TLAD-AD has more com-

plexity than PLAD-AD. The diffusion of FLAD-AD leads to the blur-

ring of depth image discontinuities, so it has the worst perfor-

mance on boundary regions, as compared to the other methods.

In contrast to FLAD-AD, TLAD-AD, and PLAD-AD, the performances
f FLAD-AD (I), TLAD-AD (I), and PLAD-AD (I) are very similar, be-

ause the form of ( 
||∇I t 

i j 
|| 

ρ1 K 
t 
i 

) 2 leads to more diffusion for some ar-

ifact pixels than the form of 
||∇I t 

i j 
|| 2 

ρ2 
2 

K t 
i 

in each iteration. The stop-

unction in Eq. (3) is more efficient on preserving sharp bound-

ries, as compared to the stop-function in Eq. (4) . But the stop-

unction of Eq. (4) in the proposed FLAD-AD (I), TLAD-AD (I), and

LAD-AD (I) does not change depth structures too much, and most

f the detailed geometry structures are well preserved when re-

oving severe coding artifacts. 

As shown in Table 1 , the proposed method can greatly im-

rove the quality of both depth images and synthesized virtual

mage at the same time, as compared with several state-of-the-

rt approaches. From this table, it can also be seen that the pro-

osed PLAD-AD (I) and FLAD-AD (I) greatly improve the accuracy

f depth images and have the best performance except BF [40] ,

hile greatly enhancing synthesized images. Although depth image

SNR of BF [40] is high, it gets a little gains regarding PSNR, ISS,

SIM of the synthesized virtual image as well as ISS and SSIM of

epth images, as compared with other methods. The synthesized

mages with filtered depth images are displayed in Fig. 3 , from

hich we can see that the visual quality of the proposed method

as superior performance to the other approaches. 

From Fig. 3 (c), it can be observed that BF [40] can smoothen

ome artifacts, so it cannot restore image sharp boundaries, and

he edges remain to be blurring. JTF [41] slightly improves the

uality depth image and its synthesized color image, as displayed

n Fig. 3 (d-n), but it can’t compete with the proposed LAD-AD,

RWF [9] , ADTF [36] , and TSF [38] regarding the quality improve-

ent of synthesized color image. As depicted in Fig. 3 and Table 1 ,

RWF [9] , ADTF [36] , and TSF [38] improve the objective and visual

uality of synthesized images, but they do not greatly enhance the

uality of depth images and even make them worse than the un-

ltered distorted depth images. One fatal drawback of ADTF [36] ,

nd TSF [38] is that these methods always smoothen some small

et significant objects, and even may eliminate some small objects,

s shown in Fig. 3 (c–e). It is obvious that the proposed method

an avoid these drawbacks, as compared with these methods. 

From Table 1 , it can be seen that the BF [40] , JTF [41] , and IRWF

9] spends more filtering time than the proposed method, ADTF

36] , and TSF [38] , while the filtering time of the proposed TLAD-

D-2, TLAD- AD, FLAD- AD, PLAD- AD, FLAD- AD (I) and FLAD-AD (I)

s less than TSF and TLAD-AD-1, but more than ADTF [36] . In addi-

ion, the TLAD-AD filtering time is more than FLAD-AD, PLAD-AD,
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Table 1 

The average objective quality comparison of HEVC-compressed depth images filtered by different meth- 

ods and its synthesized images over four standard multi-view-plus-depth sequences with different quan- 

tization parameters. (The font of the top three ranking methods is bold). 

Measurements PSNR ISS SSIM Time(s) 

Methods Depth Sythesized Depth Sythesized Depth Sythesized Depth 

Coded 44.05 50.20 52.61 55.84 0.96426 0.99690 —

BF 44.49 50.88 53.06 56.05 0.96755 0.99721 16.15 

JTF 44.25 50.45 52.91 56.02 0.96741 0.99706 41.82 

IRWF 44.04 51.37 53.02 56.36 0.96646 0.99743 16.86 

ADTF 43.93 51.31 52.84 56.27 0.96557 0.99739 1.20 

TSF 43.39 51.47 52.91 56.33 0.96386 0.99740 3.45 

TLAD-AD-1 44.09 51.20 53.10 56.28 0.96596 0.99737 4.18 

TLAD-AD-2 44.34 50.89 52.97 56.12 0.96653 0.99729 1.72 

FLAD-AD 44.16 50.86 53.12 56.30 0.96635 0.99739 2.04 

TLAD-AD 44.18 50.80 53.10 56.29 0.96629 0.99737 4.35 

PLAD-AD 44.19 50.83 53.10 56.29 0.96636 0.99737 2.47 

FLAD-AD (I) 44.39 51.43 53.18 56.33 0.96764 0.99740 2.30 

PLAD-AD (I) 44.39 51.42 53.19 56.33 0.96767 0.99740 2.57 

Fig. 3. The first row: (a) the close-up of the original depth map Shark in view 1, (b) HEVC (QP41), (c) BF [40] , (d) JTF [41] , (e) IRWF [9] , (f) ADTF [36] , (g) TSF [38] , (h-n) 

TLAD-AD-1, TLAD-AD-2, FLAD-AD, TLAD-AD, PLAD-AD, FLAD-AD (I), PLAD-AD (I); the second row of (a-j) is corresponding depth image of view 5; the third row of (a-n) is 

middle virtual images synthesized by corresponding depth images in the first and second row. 
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Fig. 4. The visual comparison of RTV, DC-RTV, and LAD-RTV. (a) Input image (Notice the red-line and green-line boxed regions for better comparison of different methods), 

(b) RTV [1] , (c) DC-RTV, (d) our LAD-RTVs. For each image of (a-d), the left image is the full image, and the right image is the close-up. (For interpretation of the references 

to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 5. The visual comparison of several image smoothing methods. (a) Input image, (b) WLS [3] , (c) RC [6] , (d) RGF [7] , (e) RGIF [8] , (f) DEAF(RGF) [43] , (g) RTV [1] , (h) our 

LAD-RTVs. 
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FLAD-AD (I) and PLAD-AD (I), because TLAD-AD requires to calcu-

late the local activity in each iteration. TLAD-AD-1 takes more time

than TLAD-AD-2 because it requires a large number of iteration to

reach the stop condition. 

In summary, our FLAD-AD (I) and PLAD-AD (I) have more sta-

ble performances than TLAD-AD-1, TLAD-AD-2, TLAD-AD, FLAD-AD,

and PLAD-AD in terms of PSNR, ISS, SSIM, and image filtering time

for filtered depth image and its synthesized image. Our FLAD-AD

(I) and PLAD-AD (I) can greatly improve the quality of the depth

image and its synthesized image at the same time, when com-

pared with BF [40] , JTF [41] , and IRWF [9] , TSF [38] , and ADTF [36] .

Furthermore, our FLAD-AD (I) and PLAD-AD (I) spend less filtering

time than BF [40] , JTF [41] , IRWF [9] , and TSF [38] , apart from ADTF

[36] . 

5.3. Image smoothing and scale representation with LAD-RTVs 

For texture removal, we first compare the proposed LAD-RTVs

with its reduced DC-RTV and RTV [1] . As shown in Fig. 4 , our DC-

RTV and LAD-RTVs are superior to RTV [1] on edge-preserving.

In our LAD-RTVs model, by using both color-sharing informa-

tion and each-channel discriminative information to form DCWTV

and DCWIV measurements, our model can better maintain image

salient contours than RTV [1] . Meanwhile, DC-RTV is inferior to

the proposed model of LAD-RTVs, which can further remove more

details. Secondly, we compare the proposed LAD-RTVs with sev-

eral state-of-the-art image smoothing approaches, such as RTV [1] ,

weighted least squares (WLS) [3] , region covariance based method

(RC) [6] , rolling guidance filter (RGF) [7] , robust guided image fil-

tering (RGIF) [8] , and DEAF(RGF) [43] , as shown in Fig. 5 . When the

input image has complex textures with strong gradient, WLS could

not remove these detail pixels efficiently, as displayed in Fig. 5 (b).

RGF and DEAF(RGF) [43] could remove all kinds of textures, but

this method has the difficulty on accurate edge localization, as dis-

played in Fig. 5 (d, f). In addition, RGF [7] , RC [6] and DEAF(RGF)

[43] may make most of edges to be blurred, as shown in Fig. 5 (d,

e, f), although they have removed many details and textures. As

displayed in Fig. 5 (h, g, e), the proposed LAD-RTVs, RTV [1] , and

RGIF [8] have some similar appearances for texture removal, but

our methods could preserve more meaningful salient contour than

RTV [1] and RGIF [8] . For image representation in three scales, we

have compared our LAD-RTVs with WLS [3] , L0GM [2] , RTV [1] ,

RGF [7] , RGIF [8] , and MuGIF [34] . Following [34] , we set the com-
arative methods in the common smoothing level by tuning the

arameters of each method to reach a similar difference, whose

etails can be found in [34] . As depicted in Fig. 6 (h), the pro-

osed LAD-RTVs can preserve sharp edge and well locate the edge

f main object contour, as compared with several existing meth-

ds. As displayed in Fig. 6 (b–c), WLS [3] and L0GM [2] can well

emove the texture details, but they work poorly on the scale rep-

esentation. RGF [7] can coarsely represent an image in different

cales and preserve the contour, but it also changes edge local-

zations using the isotropic Gaussian kernel during the initializa-

ion. From Fig. 6 (d–f) and (g-h), it can be seen that LAD-RTVs,

TV [1] , RGIF [8] , and MuGIF [34] have a similar performance on

he scale-space representation of images, but there are some dif-

erences on boundary preservation. The proposed LAD-RTVs could

reserve more structures for scale-space representation than oth-

rs. Although the proposed method LAD-RTVs, RGIF [8] and MuGIF

34] are achieved by optimization with similar appearances, they

se different smoothing techniques. The proposed LAD-RTVs and

TV [1] use the features of texture and structure, but both RGIF

8] and MuGIF [34] consider the static and dynamic guidance’s

oint effects for image smoothing. Additionally, when compared

ith RTV [1] , the proposed method has better performance on tex-

ure removal and edge localization for image scale-representation,

ecause our LAD-RTVs leverages both color-sharing information

nd single-channel discriminative information. 

.4. Image denoising with LAD-RTVd 

Ten image set consists of “Monarch”, “Barbara”, “Pepper”,

Lena”, “Man”, “Comic”, “Zebra”, “Flowers”, “Bird”, and “Boat”. This

et is tested to evaluate the efficiency of different methods for im-

ge denoising. The zero mean Gaussian noises are added into the

lean image with standard deviation of 13, 26, and 52 to get noisy

mages. We compare the proposed LAD-RTVd with several existing

ovel methods: BM3D [44] , RBF [17] , WBF [17] , TV [45] , and RTV

1] , as shown in Table 2 . From this table, it can be observed that

he average objective quality of the proposed method for denoising

as better performance than T V, RT V, RBF and WBF. Meanwhile,

AD-RTVd has better PSNR measurement than LAD-RTVd (1) and

he LAD-RTVd filtered images are more smooth than those filtered

y LAD-RTVd (1). 

However, LAD-RTVd has lower quality than the approach of

M3D, which are built upon the block-matching and 3D filtering
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Fig. 6. The visual comparison of scale-space representation (a) Input image, (b) WLS [3] , (c) L0GM [2] , (d) RTV [1] , (e) RGF [7] , (f) RGIF [8] , (g) MuGIF [34] , (h) ours LAD-RTVs. 

Table 2 

The average objective PSNR comparison of noisy images filtered by different methods. 

Sigma Noisy BM3D RBF WBF TV RTV LAD- LAD- 

[44] [17] [17] [45] [1] RTVd (1) RTVd 

13 26.22 32.61 28.61 30.62 27.79 28.07 31.04 31.31 

26 20.37 28.93 27.55 27.87 26.41 26.14 27.84 28.06 

52 14.83 24.98 24.27 23.63 23.38 23.94 24.39 24.49 

Ave. 20.47 28.84 26.81 27.38 25.86 26.05 27.76 27.95 

Fig. 7. The visual comparison of several denoising methods: (a) ”Comic” containing zero mean Gaussian noise with standard deviation to be 13; (b) is the close-ups of the 

line-boxed regions in (a); (c) BM3D [44] , (d) RBF [17] , (e) WBF [17] , (f) TV [45] , (g) RTV [1] , (h) LAD-RTVd (1), (i) our LAD-RTVd. (Note that LAD-RTVd (1) refers to LAD-RTVd 

with th l = 1 ). 
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ith very high computational complexity. Our LAD-RTVd comes

rom image smoothing by regarding the noises as the duplicate

exture elements. Thus, the inherent drawbacks of LAD-RTVd limit

ts denoising efficiency, especially for textural images with noise-

ike details. As compared to BM3D, our LAD-RTVd could produce

harper results, as displayed in Fig. 7 (c, i). However, the BM3D-

ltered image tends to be blurry, which may often lead to higher

SNR improvement than LAD-RTVd. The visual performance of TV

45] is inferior to the one of RTV [1] , as displayed in Fig. 7 (f, g).

BF [17] and WBF [17] have high objective performance than RTV

1] , as shown in Fig. 7 (d, e, g). Although RBF [17] can eliminate the

oisy pixels by bilateral filtering, it may remove some fine details.

uilt on RBF [17] , as shown in Fig. 7 (d, e), WBF [17] has better

isual performance than RBF [17] by adding the corresponding BF-

ltered noisy image back to the filtered image. From Fig. 7 (g, h), it

an be seen that RTV only tends to smoothen the textures for im-

ge structures preservation, but the LAD-RTVd could well preserve

etails by catching the location and amplitude of noises accord-

ng to a combination of the local activity and gradient. Besides, the

ltered image by LAD-RTVd is more smooth than that filtered by

AD-RTVd (1), as displayed in Fig. 7 (h, i). 

. Conclusion 

In this paper, we propose to use a local activity measure-

ent of the clipped and normalized variance or standard devia-

ion to drive anisotropic diffusion and relative total variation for

etter structural-preserving filtering. Meanwhile, two novel edge-

top functions are introduced for our LAD-AD to efficiently re-
ove severe artifacts and preserve the fine geometry structures

n HEVC-compressed depth images. Furthermore, our LAD-RTV can

e not only used for image denoising but also image smoothing as

ell scale-representation. Through a large number of experimental

esults, it has been demonstrated that our methods are superior

o several state-of-the-art approaches. Additionally, the parameter

etting for our frameworks has been discussed and analyzed. Our

uture works will be put on the exploration of more powerful local

ctivity measurements for image filtering, and we will generalize

he proposed method for many other filtering frameworks. 
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