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Abstract—Recently, convolutional neural network (CNN)
visual features have demonstrated their powerful ability as a
universal representation for various recognition tasks. In this
paper, cross-modal retrieval with CNN visual features is imple-
mented with several classic methods. Specifically, off-the-shelf
CNN visual features are extracted from the CNN model, which
is pretrained on ImageNet with more than one million images
from 1000 object categories, as a generic image representation
to tackle cross-modal retrieval. To further enhance the represen-
tational ability of CNN visual features, based on the pretrained
CNN model on ImageNet, a fine-tuning step is performed by
using the open source Caffe CNN library for each target data set.
Besides, we propose a deep semantic matching method to address
the cross-modal retrieval problem with respect to samples which
are annotated with one or multiple labels. Extensive experiments
on five popular publicly available data sets well demonstrate the
superiority of CNN visual features for cross-modal retrieval.

Index Terms—Convolutional neural network (CNN) visual
features, cross-media, cross-modal, deep learning, multimodal.

I. INTRODUCTION

W ITH rapid development of information technology,
there has been an enormous amount of data with

various modalities (e.g., image, text, audio, video, etc.) gener-
ated on the Internet. These data usually co-occur to describe
the same objects or events and thus cross-modal retrieval is
becoming imperative for many real-world applications, such
as using image to search the relevant text documents or
using text to search the relevant images. However, multimodal
data usually span different feature spaces. This heterogeneous

Manuscript received October 13, 2015; revised December 22, 2015;
accepted January 14, 2016. Date of publication March 8, 2016; date of current
version January 13, 2017. This work was supported in part by the National
Basic Research Program of China under Grant 2012CB316400, in part by
the Fundamental Scientific Research under Project K15JB00360, in part by
the National Natural Science Foundation of China under Grant 61210006
and Grant 61532005, and in part by the Program for Changjiang Scholars
and Innovative Research Team in University under Grant IRT201206. This
work was performed when Yunchao Wei was visiting the National University
of Singapore. This paper was recommended by Associate Editor X. He.
(Corresponding author: Shikui Wei.)

Y. Wei, Y. Zhao, S. Wei, and Z. Zhu are with Institute of Information
Science, Beijing Jiaotong University, Beijing 100044, China, and also
with Beijing Key Laboratory of Advanced Information Science and
Network Technology, Beijing 100044, China (e-mail: 11112065@bjtu.edu.cn;
yzhao@bjtu.edu.cn; shkwei@bjtu.edu.cn; zhfzhu@bjtu.edu.cn).

C. Lu, L. Liu, and S. Yan are with the Department of Electrical and
Computer Engineering, National University of Singapore, Singapore 2423525
(e-mail: canyilu@nus.edu.sg; liuluoqi@nus.edu.sg; eleyans@nus.edu.sg).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCYB.2016.2519449

characteristic has been widely considered as a great challenge
to cross-modal retrieval.

During the past few years, a great number of approaches
have been proposed to address cross-modal retrieval. Some
articles [13], [14], [38], [39], [42], [56] learn an optimal
common representation of different modalities for cross-
modal retrieval. This kind of approaches project repre-
sentations of multiple modalities into a common (or an
isomorphic) space, such that the distance between two
objects with similar semantics could be minimized while
the distance between two objects with dissimilar seman-
tics could be maximized. To address the problem of pro-
hibitively expensive nearest neighbor search, some hashing-
based approaches [3], [26], [28], [43], [44], [59], [65],
[67], [69], [70] to large scale similarity search have drawn
much interest from the cross-modal retrieval community.
Besides, ranking models [32], [58], [61], [63] and deep
models [1], [11], [30], [34], [45], [53] have also been widely
considered for multimodal problems in recent years. Despite
their contributions to the solution of cross-modal retrieval,
the performances of most of these techniques are still far
from satisfactory. This may be the case because the per-
formance of cross-modal retrieval is highly dependent on
the visual feature representation and the traditional hand-
crafted feature extraction techniques such as scale-invariant
feature transform (SIFT) [31] and histogram of oriented gra-
dients (HoG) [6], have limited the performance of cross-modal
retrieval.

Recently, significant progress has been made in visual
recognition, e.g., classification and detection, due to the devel-
opment of convolutional neural network (CNN) [25], [27].
Especially, a big breakthrough in image classification was
made by [25], which has achieved the state-of-the-art perfor-
mance (with 10% gain over the method based on hand-crafted
features) in large-scale object recognition, i.e., ImageNet
large scale visual recognition challenge (ILSVRC) [7] with
1000 object categories and 1.2 million images. More
recently, Donahue et al. [8], Razavian et al. [40], and
Sermanet et al. [41] demonstrated that features extracted
from the pretrained CNN can be considered as a generic
image representation for diverse visual recognition tasks. To
the best of our knowledge, few of the previous articles has
applied CNN visual features to cross-modal retrieval. In this
paper, we exhaustively compare several classic cross-modal
retrieval methods based on CNN visual features and tradi-
tional visual features, e.g., SIFT bag-of-visual-words (BoVW).
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Furthermore, we propose a simple but effective deep semantic
matching (deep-SM) method to address cross-modal retrieval.

The main contributions of this paper are listed as follows.
1) We investigate using off-the-shelf CNN visual features

to implement cross-modal retrieval between images and
text. Specifically, the off-the-shelf CNN visual features
are extracted from the CNN which is pretrained on a
large-scale image data set, i.e., ImageNet. As far as we
know, this is the first dedicated study to survey the cross-
modal retrieval between images and text based on CNN
visual features.

2) To better adapt the pretrained CNN model to specific
data sets, we utilize the images from the target data
set to fine-tune the pretrained model. We compare the
off-the-shelf CNN visual features with the fine-tuned
CNN visual features on cross-modal retrieval tasks, and
experimental results demonstrate that further improve-
ment can be made with CNN visual features fine-tuned
by the images from the target data set.

3) We present a simple but effective deep-SM method to
address the cross-modal retrieval problem with respect to
samples which are annotated with one or multiple labels.
In particular, two independent deep networks are learned
to map image and text into a common semantic space
with higher level abstraction. The correlation between
two modalities can be built according to their shared
ground truth label(s).

4) Extensive experiments on five public available data
sets, including Wikipedia [38], Pascal sentence [37],
INRIA-Websearch [23], Pascal VOC 2007 [9], and
NUS-WIDE [4], well demonstrate the superiority of
CNN visual features for cross-modal retrieval.

The remainder of this paper is organized as follows. We
briefly review the related work on cross-modal retrieval in
Section II. Section III details the CNN visual features extrac-
tion process and the proposed deep-SM method. Extensive
experiments and conclusions are given in Section IV and
Section V, respectively.

II. RELATED WORK

A. CCA-Based Models

As one of the most popular cross-modal retrieval mod-
els, canonical correlation analysis (CCA) [14] is usu-
ally employed to find a pair of linear transformations
to maximize the correlations between representations of
two modalities. Recently, based on CCA, many exten-
sions [5], [13], [38], [39], [42], [56] are applied to cross-
modal retrieval. Rasiwasia et al. [38] proposed a semantic
correlation matching (SCM) approach, where the multiclass
logistic regression is applied to the maximally correlated fea-
ture representations obtained by CCA, to produce an isomor-
phic semantic space for cross-modal retrieval. As a supervised
extension of CCA, Sharma et al. [42] proposed a generic
framework called generalized multiview analysis to map data
representations in different modality spaces to a common
(non)linear subspace. More recently, Gong et al. [13] proposed
a three-view CCA model by introducing a semantic view,

which can be obtained by supervised information or clustering
analysis, to achieve a better separation for multimodal data of
different classes in the learned common subspace. Similarly,
Rasiwasia et al. [39] presented a cluster CCA approach to
learn discriminant common representations that maximize the
correlation between the two modalities while segregating the
different classes in the learned common space.

B. Hashing-Based Models

With the explosive growth of high-dimensional cross-modal
data, the problem of nearest neighbor search becomes more
expensive than ever before. To address this problem, hashing-
based approaches [3], [26], [28], [43], [44], [59], [65], [67],
[69], [70] for large scale similarity search have attracted
considerable interest in the cross-modal retrieval community.
Using hashing for multimodal problems was proposed by
Bronstein et al. [3], named cross modal similarity sensitive
hashing (CMSSH). However, CMSSH only considers the inter-
modality correlation and ignores the intramodality similarity.
To address this problem, Kumar and Udupa [26] proposed
cross view hashing to generate hash codes by minimizing
the distance of hash codes for the similar data and max-
imizing the distance for the dissimilar data. Most recently,
Wu et al. [59] proposed a sparse multimodal hashing method,
which can obtain sparse code-sets for the data across different
modalities via joint multimodal dictionary learning, to address
cross-modal retrieval.

C. Ranking Models

In recent years, leaning to rank tech-
niques [32], [58], [61], [63] have been attracted extensive
attention for multimodal problems. In general, these methods
are supervised but do not enforce the assumption that
the trained multimodal data must be paired as needed for
CCA-based models (e.g., one image is in pair-correspondence
with one text description). Specifically, Yang et al. [61]
proposed a semi-supervised algorithm called ranking with
local regression and global alignment to learn a robust
Laplacian matrix for multimodal data ranking. Lu et al. [32]
proposed a latent semantic cross-modal ranking algorithm to
optimize the listwise ranking loss with a low rank embedding
for cross-modal retrieval. To take advantage of bi-directional
ranking examples, which means that both text-query-image
and image-query-text ranking examples are utilized during
the training process, Wu et al. [58] presented a bi-directional
cross-media semantic representation model to achieve a better
performance for cross-modal retrieval.

D. Deep Models

With the development of deep learning, many deep mod-
els [1], [11], [30], [34], [45], [53] have been proposed to
address multimodal problems. Specifically, Ngiam et al. [34]
and Srivastava and Salakhutdinov [45] proposed to learn a
shared representation between different modalities based on
restricted Boltzmann machine [15]. Andrew et al. [1] intro-
duced a deep CCA model, which can be viewed as a nonlinear
extension of the linear CCA, to learn complex nonlinear



WEI et al.: CROSS-MODAL RETRIEVAL WITH CNN VISUAL FEATURES: A NEW BASELINE 451

transformations of two modalities of the data. Frome et al. [11]
presented a deep visual-semantic embedding model to identify
visual object using both labeled image data and seman-
tic information obtained from unannotated text documents.
Wang et al. [53] proposed an effective mapping mechanism,
which can capture both intramodal and intermodal semantic
relationships of multimodal data from heterogeneous sources,
based on the stacked auto-encoders deep model. However,
most of these articles focus on using traditional visual fea-
tures (e.g., SIFT BoVW) as the input of the their proposed
networks for cross-modal retrieval and little work have been
conducted for cross-modal retrieval by employing CNN visual
features.

Beyond the above mentioned models, other models [18],
[20], [22], [29], [33], [47], [49]–[52], [54], [57], [60], [62],
[64], [66], [68] are also proposed to address multimodal
problems. Specially, Hwang and Grauman [18] proposed
an unsupervised learning method based on kernel CCA to
discover the relationship between human tags and the rela-
tive importance of objects in the image. Wang et al. [51]
introduced a novel approach to facilitating image search
based on a compact semantic embedding. Jia et al. [20]
presented a topic model to learn cross-modality similar-
ity for multimodal data. In [33], a parallel field align-
ment method, which integrates a manifold alignment frame-
work from the perspective of vector fields, was proposed
to address cross-modal retrieval problem. In [66], both the
intramodal and the intermodal correlation are explored for
cross-modal retrieval. Although these models have made great
contributions to the solution of cross-modal retrieval, the
performances of most of them are still far from satisfac-
tory. The reason may be that the visual features extracted
by traditional feature extraction techniques cannot effec-
tively express the image semantics. Most of the existing
cross-modal retrieval methods employ traditional global fea-
ture extraction techniques (e.g., color, GIST [35]) or local
features (e.g., SIFT [31] and HoG [6]) extraction-coding-
pooling pipeline to generate feature representation for images.
However, these traditional feature extraction techniques have
limited the performance of image recognition during the past
few years.

Recently, significant progress has been made for visual
recognition tasks due to the development of CNN. Specifically,
Razavian et al. [40] have demonstrated that features extracted
from the pretraind CNN can be utilized as a generic image rep-
resentation to tackle diverse visual recognition tasks. However,
as far as we know, there has been no work which sur-
veys the effect of CNN visual features for cross-media
retrieval. In this paper, extensive experiments are conducted
on five publicly available data sets to compare the effective-
ness of CNN visual features and traditional visual features
for cross-modal retrieval. Inconceivably, good performance
can be achieved by CNN visual features based on several
classic cross-modal retrieval methods, such as CCA and
three-view CCA. The results strongly suggest that visual
features obtained from the pretrained or fine-tuned CNN
model should be the primary candidates for cross-modal
retrieval.

III. CNN VISUAL FEATURES EXTRACTION

AND DEEP SEMANTIC MATCHING

During the past few years, deep CNN has demonstrated
a strong capability for image classification on some pub-
licly available data sets, such as CIFAR-10/100 [24],
Pascal VOC [9], and ImageNet [7]. Some recent
articles [8], [12], [36], [40], [41], [55] demonstrated
that the CNN models pretrained on large data sets with data
diversity, e.g., ImageNet, can be directly transferred to extract
CNN visual features for various visual recognition tasks
such as image classification and object detection. Inspired by
these articles, we propose to utilize CNN visual features to
implement cross-modal retrieval.

The pretrained CNN model has a similar network structure
to that of Krizhevsky et al. [25]. As shown in the upper part of
Fig. 1, which contains five convolutional layers (short as cov)
and three fully-connected layers (short as fc). The CNN model
is pretrained by 1.2 million images of 1000 categories from
ImageNet. Two kinds of CNN visual features (i.e., fc6 and fc7
as described in Table I) are utilized for cross-modal retrieval.
To adapt the parameters pretrained on ImageNet to the target
data set, we utilize the images from the target data set to fine-
tune the CNN. Then, we extract the fine-tuned CNN visual
features of the first two fully-connected layers (i.e., FT-fc6
and FT-fc7 as described in Table I) for cross-modal retrieval.
Besides, motivated by Rasiwasia et al. [38], we propose a
deep-SM approach to address the cross-modal retrieval prob-
lem between images and text with respect to the samples with
one or multiple labels. Specifically, we employ the fine-tuned
CNN and the trained fully-connected neural network to project
image and text into an isomorphic semantic space with high
level abstraction. The correlation between two modalities is
built according to their shared ground truth label(s).

A. Extracting Visual Features From Pretrained CNN Model

Inspired by Donahue et al. [8], Razavian et al. [40], and
Sermanet et al. [41], which demonstrated the outstanding per-
formance of the off-the-shelf CNN visual features in various
recognition tasks, we utilize the pretrained CNN model1 to
extract CNN visual features for cross-modal retrieval. In par-
ticular, each image is first resized to 256 × 256 and fed into
the CNN model. We only utilize the center patch of the image
to produce the CNN visual features. As shown in Fig. 1, we
exploit two kinds of off-the-shelf CNN visual features in this
paper. fc6 and fc7 denote the 4096 dimensional features of
the first two fully-connected layers after the rectified linear
units (ReLU) [25].

B. Extracting Visual Features From Fine-Tuned CNN Model

Since the categories (and the number of categories) between
ImageNet and the target data set are usually different, directly
using the pretrained CNN model to extract visual features

1The off-the-shelf CNN visual features used in this paper are extracted from
DeCAF [8]. Our experiments based on off-the-shelf CNN visual features were
conducted before the release of Caffe [21], which could also be utilized to
extract CNN visual features. We did some comparative experiments by using
the off-the-shelf CNN features from the Caffe model on the Pascal sentence
data sets. The results were very similar with those based on DeCAF.
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Fig. 1. Illustration of the CNN visual features and the proposed deep-SM approach. The off-the-shelf CNN visual features, i.e., fc6 and fc7, can be directly
extracted from the pretrained CNN model. The fine-tuned CNN visual features, i.e., FT-fc6 and FT-fc7, are extracted from the CNN model, which is first
pretrained on ImageNet and then fine-tuned on the target data set. For deep-SM, as shown in the lower part, the c dimensional outputs (c is the number of
classes of the target data set) of the Softmax layer from the image fine-tuned net and the text fully-connected net are employed for cross-modal retrieval.

TABLE I
DESCRIPTION OF CNN VISUAL FEATURES USED IN THIS PAPER

may not be the best strategy. To better adapt the pretrained
model on ImageNet to the target data set, we employ the
images from the target data set (e.g., Wikipedia, Pascal sen-
tence, INRIA-Websearch, Pascal VOC 2007, and NUS-WIDE)
to fine-tune the pretrained parameters.

Each image from the target data set is resized into 256×256
without cropping. We randomly extract 227×227 patches (and
their horizontal reflections) from the given image and fine-tune
the pretrained CNN model based on these extracted patches.
The number of neural units of the last fully-connected layer is
modified from 1000 to c, where c is the number of classes of
the target data set. The output of the last fully-connected layer
is then fed into a c-way soft max which produces a probability
distribution over c classes.

In this paper, we adopt different loss functions for differ-
ent target data sets. We note that squared loss can achieve a
similar or even better classification accuracy when the num-
ber of classes of the target data set is small. However, with
the growth of the number of classes, cross entropy loss func-
tion [25] can reach a better classification result. Therefore, we

employ the squared loss to fine-tune the pretrained parame-
ters for Wikipedia, Pascal sentence, Pascal VOC 2007, and
NUS-WIDE. The number of classes of these four data sets
are no more than 21. For INRIA-Websearch,which includes
100 classes, we utilize cross entropy as the loss function dur-
ing fine-tuning. In this paper, we mainly make a detailed
introduction of the squared loss function.

Suppose there are N images in the target data set, and
yi = [yi1, yi2, . . . , yic] is the label vector of the ith image.
yij = 1 ( j = 1, . . . , c) if the image is annotated with
class j, and otherwise yij = 0. The ground-truth probability
vector of the ith image is defined as p̂i = yi/||yi||1 (||·||1
denotes the �1 norm) and the predictive probability vector is
pi = [pi1, pi2, . . . , pic]. Then the cost function to be minimized
is defined as

J = 1

N

N∑

i=1

c∑

k=1

(
pik − p̂ik

)2
. (1)

As shown in Fig. 1, the parameters of the first seven lay-
ers are initialized by the parameters pretrained on ImageNet
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and the parameters of the last fully-connected layer are ran-
domly initialized with a Gaussian distribution G(μ, σ ) (μ = 0,

σ = 0.01). During the fine-tuning process, we adopt a dis-
criminating learning rate scheme for different layers. Inspired
by Girshick et al. [12] and Wei et al. [55], we experimen-
tally set the learning rates of the convolutional layers, the first
two fully-connected layers and the last fully-connected lay-
ers as 0.001, 0.002, and 0.01 at the beginning, respectively.
By setting the different learning rates for different layers, the
updating rates for parameters of different layers are also dif-
ferent. The first five convolutional layers mainly extract some
low-level invariant representations, thus the parameters are
quite consistent from the pretrained data set to the target data
set, which can be achieved by a low learning rate (i.e., 0.001
at the beginning). However, for the fully-connected layers,
especially the last fully-connected layer, which are specifically
adapted to the target data set, a much higher learning rate is
required to guarantee its fast convergence to the new optimum.
By fine-tuning like this, the parameters can better adapt to the
target data set without clobbering the transferred parameters.

Fine-tuning is performed using the open source Caffe CNN
library [21]. The pretrained model provided by [21] is used
to initialize the first seven layers of the fine-tuned CNN. We
fine-tune the CNN by stochastic gradient descent (SGD) with
a momentum of 0.9 and weight decay of 0.0005. Besides, each
layer is followed by a drop-out [16] operation with a drop-out
ratio of 0.5 to combat over fitting. Specifically, momentum
indicates the weight of the previous update, weight decay is
the weight of a regularizer to reduce the training error and
drop-out is to set the output of each hidden neuron to zero
with a setting probability. For more details of these parameters
please refer to [25]. We carry out 60 epoches for fine-tuning
and the learning rate of each layer is reduced to one tenth of
the current rate after every 20 epoches. After fine-tuning, we
utilize the fine-tuned model to extract the output of the first two
fully-connected layers after ReLU2 as the CNN visual features
for cross-modal retrieval. The feature extraction process is the
same with the process described in Section III-A.

C. Deep Semantic Matching

Rasiwasia et al. [38] proposed an SM approach to address
the cross-modal retrieval problem. In particular, SM is to repre-
sent data of different modalities at a higher level of abstraction,
so that there are natural correspondences between the text and
image spaces. Inspired by SM, we propose a deep-SM method
to address the case where the image (or text) is labeled with
one or multiple class labels.

There are some differences between SM and deep-SM. SM
tries to learn a shallow (or surface) linear classifier with a
probabilistic interpretation to produce a probability distribu-
tion over classes as the semantic features. Different from SM,
deep-SM learns a deep neural network composed of multiple
no-linear transformations to produce a probability distribution
over classes as the semantic features. For deep-SM, the outputs
of the neural network are the intrinsic probability distribution
over the class labels for image or text. We simply use these

2ReLU [25] is a nonlinear transformation f (x) = max(0, x).

probabilistic scores as the learned features on the common
semantic space for cross-modal retrieval.

For the image, during the fine-tuning process, the neural
unit number of the last fully-connected layer (i.e., fc8 with
blue bounding box as indicated in Fig. 1) is modified as c,
where c is the number of classes of the target data set. We
directly employ the c dimensional output of the Softmax layer
as the semantic representation for the image. Actually, soft
max produces a probability distribution over c classes, which
is essentially the same as SM.

For the text, since the representation of text is usually much
more discriminative than the image, the relationship between
text features and their ground-truth labels can be more easily
built. Therefore, we directly build a TextNet with three fully-
connected layers to map text features from the original feature
space to the semantic space. Specifically, many text feature
extraction techniques, such as tf-idf and latent Dirichlet allo-
cation (LDA) [2], can be employed to extract the input text
features for TextNet. Similar as the fully-connected layers in
CNN, we utilize ReLU as the nonlinear activation function
for each fully-connected layer in TextNet and the output of
the last fully-connected layer is fed into a c-way soft max,
which generates predictive scores (i.e., semantic feature) over
c classes. The TextNet is trained by SGD, and the learning rate
for each layer is set as 0.01 at the beginning and dynamically
changed according to the squared loss (or cross entropy loss)
as mentioned in Section III-B.

IV. EXPERIMENTS

A. Data Set and Metric

1) Wikipedia [38]: This data set contains 2866 image-text
pairs from ten categories in total. Each image accompanies a
text document. The whole data set is randomly split into a
training set and a testing set with 2173 and 693 pairs, respec-
tively. We employ the hand-crafted visual feature, i.e., 128
dimensional SIFT BoVW feature provided by [38], to com-
pare with CNN visual features. For text representation, we
first obtain the feature vector based on 500 tokens (with stop
words removed) and then the LDA model is used to com-
pute the probability of each document under 100 topics. The
probability vector is used for text representation.

2) Pascal Sentence [37]: This data set, which is a subset of
Pascal VOC, contains 1000 pairs of image and text description
(several sentences) from 20 categories (50 for each category).
We randomly select 30 pairs from each category for training
and the rest for testing. We extract 1024 dimensional SIFT
BoVW feature for the image to compare with CNN visual fea-
tures. For text features, we first extract the feature vector based
on the 300 most frequent tokens (with stop words removed)
and then utilize the LDA to compute the probability of each
document under 100 topics. The 100 dimensional probability
vector is used for text representation.

3) INRIA-Websearch [23]: This data set contains 71 478
pairs of image and text description (tags or sentences) from
353 categories. We remove those pairs which are marked as
irrelevant, and select those pairs that belong to any one of
the 100 largest categories. Then, we get a subset of 14 698
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pairs for evaluation. We randomly select 70% of the pairs
from each category as the training set (10 332 pairs), and the
rest are treated as the testing set (4366 pairs). We employ
locality-constrained linear coding (LLC) [48] to extract 2560
dimensional features (with a codebook of size 512 and a two
level spatial pyramid) for image representation. For text rep-
resentation, we first obtain the feature vector based on 25 000
most frequent tokens (with stop words removed) and then use
the LDA to compute the probability of each document under
1000 topics. The 1000 dimensional probability vector is used
for text representation.

4) Pascal VOC 2007 [9]: There are 9963 images of 20
categories in this data set. Each image accompanies 399 tags
annotated by [17]. This data set is divided into train, val,
and test subsets. We conduct experiments on trainval and
test splits, which contain 5011 and 4952 pairs, respectively.
We employ the 776 dimensional visual feature (GHB for
short), which contains a 512-D GIST feature, a 64 dimensional
Hue-saturation-value (HSV) feature and a 200 dimensional
SIFT BoVW feature, provided by [17] to compare with CNN
visual features. For text representation, the 798 dimensional
tag ranking feature (relative and absolute) provided by [17] is
employed as the text feature.

5) NUS-WIDE [4]: This data set contains 269 648 images.
Each image is accompanied with 81 ground truth labels and
1000 text tags. We drop those pairs containing images without
any ground truth label or text annotation, and only select those
pairs belonging to any one of the 21 largest categories. Then,
based on the division provided by [4], a subset of 114 117
pairs for training and 76 303 pairs for testing can be obtained
for evaluation. We employ the 500 dimensional SIFT BoVW
feature provided by [4] to compare with CNN visual features
and use the 1000 dimensional text annotations provided by [4]
as the text features.

Specifically, Wikipedia, Pascal sentence, and INRIA-
Websearch are single-label (each pair of image and text is
annotated with one label) data sets, and Pascal VOC 2007 and
NUS-WIDE are two multilabel (each pair of image and text is
annotated with one or more labels) data sets. Retrieval perfor-
mance is evaluated by mean average precision (mAP), which
is one of the standard information retrieval metrics. Given a
set of queries, the average precision (AP) of each query is
defined as

AP =
∑R

k=1 P(k)rel(k)
∑R

i=1 rel(k)

where R denotes the number of the retrieved results. rel(k) = 1
if the item at rank k is relevant, rel(k) = 0 otherwise. P(k)
is the precision of the retrieved results ranked at k. We can
get the mAP score by averaging AP for all queries. For each
data set, the TextNet is composed of three fully-connected
layers which are denoted as T-fc1, T-fc2, and T-fc3. In this
paper, deep learning for text data is not the key point and
it has not been will studied. We experimentally change the
number of neural units of each layer so that the TextNet
could well converge on the training set. Details of neural unit
settings can be found in Table II. Since Pascal VOC 2007
and NUS-WIDE are two multilabel data sets, it is regarded

TABLE II
NEURAL UNIT NUMBER SETTING OF TEXTNET FOR EACH DATA SET

as a relevant result if the retrieved result shares at least one
class label with the query.

We compare the CNN visual features and traditional visual
features for cross-modal retrieval over three common subspace
learning approaches.

1) Canonical Correlation Analysis [14]: CCA attempts to
find a pair of linear transformations (i.e., matrices) to
project features of different feature spaces into a com-
mon subspace, so that the correlations between these
two variables can be maximized.

2) Three View CCA (T-V CCA) [13]: Different from CCA,
which attempts to model the relationship between two
modalities (views), Gong et al. [13]3 introduced a
semantic view, which can be obtained by supervised
information or clustering analysis, to achieve a better
separation for multimodal data of different classes in
the learned common subspace.

3) Semantic Matching (SM) [38]: SM represents the image
as well as text at a higher level of abstraction, so that
there are natural correspondences between the text and
image spaces. Rasiwasia et al. [38]4 adopted a multiclass
logistic regression [10] operation to generate common
semantic representations of multimodal data for cross-
modal retrieval.

B. Cross-Modal Retrieval on Wikipedia

Table III reports our experimental results on Wikipedia data
set over CCA, T-V CCA, and SM. We can see that off-the-shelf
CNN visual features (e.g., fc6 and fc7) yield a great improve-
ment (6.6%–9.7% based on CCA, 6.8%–11.0% based on T-V
CCA, and 14.7%–15.3% based on SM) compared with tradi-
tional SIFT BoVW feature. We notice that fc6 makes a better
improvement than fc7, which is consistent with the conclu-
sion in [8]. After fine-tuning by images from Wikipedia, the
CNN visual features can further improve the performance of
cross-modal retrieval (0.8% based on CCA, 0.4% based on
T-V CCA, and 5.3% based on SM).

In addition, based on CNN visual features, the overall per-
formance of SM is better than that of CCA and T-V CCA.
To explain this observation, we give the uni-modal classifi-
cation (logistic regression is utilized as the classifier [10])
confusion matrices for image and text as shown in Fig. 2.
We observe that the text feature possesses a greater discrim-
inative ability (with a text classification accuracy of 75.6%)
than the traditional SIFT BoVW feature (with an image clas-
sification accuracy of 26.0%). However, if we replace the

3http://www.unc.edu/∼yunchao/crossmodal.htm
4http://www.svcl.ucsd.edu/projects/crossmodal/
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Fig. 2. Confusion matrices of classification results of text and image on Wikipedia data set. Specifically, we compare the classification results of CNN visual
features with that of SIFT BoVW feature, which demonstrates that CNN visual features are more discriminative than traditional SIFT BoVW feature. (a) Text.
(b) Image-fc6. (c) Image-fc7. (d) Image-BoVW. (e) Image-FT-fc6. (f) Image-FT-fc7.

TABLE III
PERFORMANCE (mAP IN %) COMPARISON IN TERMS OF DIFFERENT

METHODS AND VISUAL FEATURES ON WIKIPEDIA DATA SET

SIFT BoVW feature by the CNN visual features, the mean
image classification accuracy can reach 43.9% (fc6: 42.3%,
fc7: 41.4%, FT-fc6: 44.7%, and FT-fc7: 47.3%). Therefore,
based on CNN visual features, better semantic representations
of images can be obtained at a higher level of abstraction.

Besides, it is worth noting that SM with the fine-tuned
CNN visual features can achieve a better performance than

TABLE IV
STATE-OF-THE-ART CROSS-MODAL RETRIEVAL PERFORMANCES

(mAP IN %) WITH TRADITIONAL VISUAL FEATURES

ON WIKIPEDIA DATA SET

deep-SM. Since the image classification accuracy of the fine-
tuned CNN is 48.5%, the main reason may be that the
text semantic feature representations generated by logistic
regression is better than that from TextNet (the classification
accuracy of TextNet is 72.9%).

Wikipedia is a very popular data set for cross-modal
retrieval evaluation, and many articles have utilized this data
set to evaluate their proposed methods. To further validate the
effectiveness of CNN visual features for cross-modal retrieval,
some performances of the state-of-the-art methods which use
the same train/test division as ours are shown in Table IV.
We can observe that, based on CNN visual features, the best
performance can reach 40.0% by employing FT-fc7 with SM,
which significantly outperforms the state-of-the-art methods
with a large margin of more than 7%.
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Fig. 3. Confusion matrices of classification results of text and image on Pascal sentence data set. In particular, we compare the classification results of CNN
visual features with that of SIFT BoVW feature, which demonstrates that CNN visual features are more discriminative than traditional SIFT BoVW feature.
(a) Text. (b) Image-fc6. (c) Image-fc7. (d) Image-BoVW. (e) Image-FT-fc6. (f) Image-FT-fc7.

C. Cross-Modal Retrieval on Pascal Sentence

Table V reports our experimental results on Pascal sen-
tence data set over CCA, T-V CCA, and SM. Similar as on
Wikipedia, the off-the-shelf CNN visual features (e.g., fc6
and fc7) also obtain significant improvements (22.4%–24.1%
based on CCA, 24.3%–27.4% based on T-V CCA, and
33.3%–35.8% based on SM) compared with the traditional
SIFT BoVW feature. Different from on Wikipedia, where
fc6 performs better than fc7, fc7 achieves a greater improve-
ment than fc6. This may because the classes in Pascal
sentence are all included in the 1000 classes of ImageNet.
Therefore, images in Pascal sentence are very similar to
those in ImageNet, which results in features from the later
fully-connected layer with more discriminative power. After
fine-tuning, a further improvement (2.0% based on CCA, 2.2%
based on T-V CCA, and 0.6% based on SM) can be made
compared with the best performance of the off-the-shelf CNN
visual features for cross-media retrieval.

Similar as Wikipedia, based on CNN visual features, the
overall performance of SM is better than that of CCA and T-V
CCA, and the deep-SM cannot compare with SM on fc7 and
FT-fc7. Fig. 3 shows the uni-modal classification confusion
matrices for the image and text. In particular, for the image,
classification accuracies of SIFT BoVW, fc6, fc7, FT-fc6,
FT-fc7, and the fine-tuned CNN are 17%, 54%, 57.8%, 55.3%,
57.0%, and 56.0%, respectively. For the text, the classification

TABLE V
PERFORMANCE (mAP IN %) COMPARISON IN TERMS OF DIFFERENT

METHODS AND VISUAL FEATURES ON PASCAL SENTENCE DATA SET

accuracies of logistic regression and TextNet are 76.8% and
70.8%. Based on CNN visual features, semantic representa-
tions of images can be more consistent with those of text.
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TABLE VI
PERFORMANCE (mAP IN %) COMPARISON IN TERMS OF DIFFERENT

METHODS AND OTHER HAND-CRAFTED VISUAL

FEATURES ON PASCAL SENTENCE DATA SET

Due to different training/testing division or different problems,
we do not compare this paper with other articles such as [46]
on this data set.

To further validate the effectiveness of CNN visual features
for the cross-modal retrieval task, we experimentally com-
pare them with some more powerful hand-crafted features,
i.e., LLC [48] and vector of locally aggregated descrip-
tors (VLAD) [19]. We first extract SIFT interest points for each
image and then encode them with LLC or VLAD to generate
the feature representation. As shown in Table VI, LLC, LLC-P,
VLAD, and VLAD-P are encoded with the codebook size of
512, 1024, 64, and 128, respectively. It can be observed that
their performance is not satisfactory even with more powerful
hand-crafted features. If we continue to enlarge the codebook
size, the performance for both LLC and VLAD will improve
but may still be limited. In addition, with 4096 dimensional
CNN visual feature, the performance can reach 47.8%, which
is much better than that of 16 384 denominational VLAD-P
feature, i.e., 20.1%.

D. Cross-Modal Retrieval on INRIA-Websearch

Table VII reports our experimental results on the
INRIA-Websearch data set over CCA, T-V CCA, SM,
and deep-SM. The off-the-shelf CNN visual features
(i.e., fc6 and fc7) obtain significant improvements
(20.5%–21.1% based on CCA, 24.6%–24.7% based on
T-V CCA, and 16.6%–17.2% based on SM) compared with
LLC. After fine-tuning, a further improvement (5.7% based
on CCA, 4.7% based on T-V CCA, and 1.9% based on SM)
can be made compared with the best performance of the
off-the-shelf CNN visual features.

Based on CNN visual features, the overall performance of
SM is better than that of CCA and T-V CCA, and the deep-
SM cannot compare with SM on fc6, FT-fc6, and FT-fc7. For
the image, classification accuracies of LLC, fc6, fc7, FT-fc6,
FT-fc7, and the fine-tuned CNN are 52.0%, 68.1%, 67.2%,
70.0%, 69.8%, and 69.0%, respectively. For the text, the

TABLE VII
PERFORMANCE (mAP IN %) COMPARISON IN TERMS OF

DIFFERENT METHODS AND VISUAL FEATURES ON

INRIA-WEBSEARCH DATA SET

TABLE VIII
PERFORMANCE (mAP IN %) COMPARISON IN TERMS OF

DIFFERENT METHODS AND VISUAL FEATURES

ON PASCAL VOC 2007 DATA SET

classification accuracies of logistic regression and TextNet are
73.0% and 72.0%. Therefore, with the CNN visual features,
semantic representations of images can be more consistent
with those of text. Since this data set is constructed by
ourselves, we do not compare this paper with other articles.

E. Cross-Modal Retrieval on Pascal VOC 2007

Table VIII reports our experimental results on Pascal VOC
2007 data set over CCA, T-V CCA, and deep-SM. Since Pascal
VOC 2007 is a multilabel data set, we implement the cross-
modal retrieval based on the criterion that it is regarded as a
relevant result if the retrieved result shares as least one class
label with the query.

From Table VIII, we can see that CNN visual
features outperform the traditional visual feature,
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TABLE IX
PERFORMANCE (mAP IN %) COMPARISON IN TERMS OF DIFFERENT

METHODS AND VISUAL FEATURES ON NUS-WIDE DATA SET

i.e., GIST-HSV-BoVW (GHB), with a large margin
(27.1%–31.2% based on CCA and 22.4%–27.1% based
on T-V CCA). Besides, with the proposed deep-SM, a signif-
icant improvement could be achieved (from 72.7% obtained
using T-V CCA to 80.0%). We may note that the results
on this data set does not show consistent improvements by
using CNN visual features after fine-tuning. The reason may
be explained as follows. On one hand, the 20 classes are
all included in the ImageNet and many images from the
training set of ILSVRC 2012 are very similar as those from
Pascal VOC 2007. Therefore, CNN features directly extracted
from the pretrained CNN model are still with powerful
discriminative ability. On the other hand, Pascal VOC 2007
is a multilabel data set, we define that it is regarded as a
relevant result if the retrieved result shares at least one class
label with the query. Therefore, the results of CNN features
(without fine-tuning) may outperform those of fine-tuned
CNN features with a certain probability.

In addition, Sharma et al. [42] utilized single-label pairs of
image and text from VOC 2007 for cross-modal retrieval eval-
uation and achieved an average mAP score of 38.3% (image
query: 42.7% and text query: 33.9%). With the same train/test
setting, Rasiwasia et al. [39] achieved an average mAP score
of 44.0% (image query: 44.5% and text query: 43.6%) on this
data set.

F. Cross-Modal Retrieval on NUS-WIDE

Table IX reports our experimental results on NUS-WIDE
data set over CCA, T-V CCA, and deep-SM. Similar as
on Pascal VOC 2007, CNN visual features also outperform
the traditional SIFT BoVW feature, with a large margin
(7.8%–11.4% based on CCA and 9.0%–17.6% based on
T-V CCA). Besides, with the proposed deep-SM, the perfor-
mance can be further improved from 64.7% to 68.6%.

As far as we know, NUS-WIDE is one of the largest pub-
licly available multilabel data set for cross-modal retrieval.
Many articles have utilized this data set to evaluate their algo-
rithms. However, we cannot directly compare our method with
previous articles due to the different ways of using this data

set (e.g., different train/test split). Similar with our criterion,
which only selects those pairs belonging to one of the 21 most
frequent categories, MASE-2014 [53] achieved an average
mAP of 44.0% (image query: 44.7% and text query: 43.2%)
based on its division. As one of the state-of-the-art hashing
based methods, SM2H-2013 [59] achieved an average mAP of
48.4% (image query: 48.0% and text query: 48.8%) by using
those pairs belonging to the ten most frequent categories.

To sum up, based on the above reported experimental
results, we can see that CNN visual features are very effective
for cross-modal retrieval.

V. CONCLUSION

In this paper, cross-modal retrieval with CNN visual features
is implemented and compared with several classic methods
based on five publicly available data sets. From experimental
results, we can see that cross-modal retrieval with images rep-
resented by CNN visual features can easily achieve superior
results compared with using traditional visual features, e.g.,
SIFT BoVW or LLC. The experimental results strongly sug-
gest that the visual feature obtained from the pretrained or
fine-tuned CNN model should be the primary candidate for
cross-modal retrieval. Based on CNN visual features, some
more effective approaches may be designed for cross-modal
retrieval. However, deep learning for text data has not been
well studied in this paper. We just employ a fully-connected
neural network for semantic features extraction. In the future,
some more appropriate neural networks such as recurrent neu-
ral network will be explored to build the relationship between
low-level features and high-level semantics for text data.
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