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Abstract—Convolutional Neural Network (CNN) has demonstrated promising
performance in single-label image classification tasks. However, how CNN best
copes with multi-label images still remains an open problem, mainly due to the
complex underlying object layouts and insufficient multi-label training images. In this
work, we propose a flexible deep CNN infrastructure, called Hypotheses-CNN-
Pooling (HCP), where an arbitrary number of object segment hypotheses are taken
as the inputs, then a shared CNN is connected with each hypothesis, and finally the
CNN output results from different hypotheses are aggregated with max pooling to
produce the ultimate multi-label predictions. Some unique characteristics of this
flexible deep CNN infrastructure include: 1) no ground-truth bounding box information
is required for training; 2) the whole HCP infrastructure is robust to possibly noisy and/
or redundant hypotheses; 3) the shared CNN is flexible and can be well pre-trained
with a large-scale single-label image dataset, e.g., ImageNet; and 4) it may naturally
output multi-label prediction results. Experimental results on Pascal VOC 2007 and
VOC 2012 multi-label image datasets well demonstrate the superiority of the
proposed HCP infrastructure over other state-of-the-arts. In particular, the mAP
reaches 90.5% by HCP only and 93.2% after the fusion with our complementary
resultin[12] based on hand-crafted features on the VOC 2012 dataset.

Index Terms—Deep Learning, CNN, Multi-label Classification
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1 INTRODUCTION

SINGLE-LABEL image classification, which aims to assign a label from
a predefined set to an image, has been extensively studied during
the past few years [10], [14], [18]. For image representation and clas-
sification, conventional approaches utilize carefully designed hand-
crafted features, e.g., SIFT [29], along with the bag-of-words coding
scheme, followed by the feature pooling [24], [32], [39] and classic
classifiers, such as Support Vector Machine (SVM) [5] and random
forests [3]. Recently, in contrast to the hand-crafted features, learnt
image features with deep network structures have shown their great
potential in various vision recognition tasks [21], [23], [25]. Among
these architectures, one of the greatest breakthroughs in image clas-
sification is the deep convolutional neural network (CNN) [23],
which has achieved the state-of-the-art performance (with 10% gain
over the previous methods based on hand-crafted features) in the
large-scale single-label object recognition task, i.e., ImageNet Large
Scale Visual Recognition Challenge (ILSVRC) [10] with more than
one million images from 1,000 object categories.
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Multi-label image classification is, however, a more general and
practical problem, since the majority of real-world images contain
objects from multiple different categories. For a typical multi-label
image, different categories of objects are located at various positions
with different scales and poses. Furthermore, the different composi-
tion and interaction between objects in multi-label images, like par-
tial visibility and occlusion, also increase the complexity of the
problem, which requires more annotated data to cover the different
situations. For example, as shown in Fig. 1, for single-label images,
the foreground objects are roughly aligned, while for multi-label
images, even with the same label, i.e., horse and person, the spatial
arrangements of the horse and person instances vary largely among
different images. Compared to single-label images which are practi-
cally to collect and annotate, the burden of annotation for a large-
scale multi-label image dataset is much heavier. Many methods [8],
[12], [32] have been proposed to address this more challenging prob-
lem. The success of CNN on single-label image classification also
sheds some light on the solution of the multi-label image classifica-
tion problem. Generally, the CNN can well handle images with
well-aligned objects, while it is relatively inaccurate in predicting
images with objects severely mis-aligned or occluded. Therefore, by
relaxing the multi-label problem into several single-label tasks and
alleviating the issues of mis-alignment and occlusion, the great dis-
criminating ability of the CNN model can be better exploited.

Recently, many hypothesis-based methods have been proposed
for detection [9] and segmentation [40], [41]. By generating a pool of
hypotheses of either bounding boxes or segments, the multi-label
problem can be transformed into several sub-tasks of single-label
prediction. Since object hypotheses generally have higher confidence
of objectness, which means they are more likely to contain certain
semantic objects, after cropping and normalization, both mis-align-
ment and occlusion can be somewhat alleviated. Motivated by the
idea of hypothesis and the great single-label classification perfor-
mance of the traditional CNN models, in this paper, we propose a
flexible deep CNN structure, called Hypotheses-CNN-Pooling
(HCP). HCP takes an arbitrary number of object segment hypotheses
(H) as the inputs, which may be generated by the sate-of-the-art
objectiveness detection techniques, e.g., binarized normed gradients
(BING) [9] or EdgeBoxes [44], and then a shared CNN (C) is con-
nected with each hypothesis. Finally, to aggregate the single-label
CNN predictions from different hypotheses into multi-label results,
anovel pooling layer (P) is integrated into the proposed CNN model
to give the ultimate multi-label predictions. Particularly, the pro-
posed HCP infrastructure possesses the following characteristics:

e No ground-truth bounding box information is required for train-
ing on the multi-label image dataset. Different from previous
works [7], [12], [30], which employ ground-truth bounding
box information for training, the proposed HCP requires
no bounding box annotation. Since bounding box annota-
tion is much more costly than labelling, the annotation bur-
den is significantly reduced. Therefore, the proposed HCP
has a better generalization ability when transferred to new
multi-label image datasets.

e The proposed HCP infrastructure is robust to noisy and/or redun-
dant hypotheses. To suppress the possibly noisy hypotheses,
a cross-hypothesis max-pooling operation is carried out to
fuse the outputs from the shared CNN into an integrative
prediction. With max pooling, the high predictive scores
from those hypotheses containing objects are preserved and
the noisy ones are discarded. Therefore, as long as one
hypothesis contains the object of interest, the noise can be
suppressed after the cross-hypothesis pooling. Redundant
hypotheses can also be well addressed by max pooling.
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Fig. 1. Some examples from ImageNet [10] and Pascal VOC 2007 [13]. The fore-
ground objects in single-label images are usually roughly aligned. However, the
assumption of object alighment is not valid for multi-label images. Also note the
partial visibility and occlusion between objects in the multi-label images.

o  The shared CNN is flexible and can be well pre-trained with a
large-scale single-label image dataset. To address the problem
of insufficient multi-label training images, based on the
Hypotheses-CNN-Pooling architecture, the shared CNN
can be first well pre-trained on some large-scale single-
label dataset, e.g.,, ImageNet, and then fine-tuned on
the target multi-label dataset. Besides, the architecture of
the shared CNN is flexible, and various advanced CNNs,
e.g., Network-in-Network [28], Spatial Pyramid Pooling
Net [20], Very Deep Net [36] and GoogLeNet [37], can be
employed as the shared CNN.

o  The HCP outputs are intrinsically multi-label prediction results.
HCP produces a normalized probability distribution over
the labels after the softmax layer, and the predicted proba-
bility values are intrinsically the final classification confi-
dence for the corresponding categories.

2 RELATED WORK

Deep learning tries to model the high-level abstractions of visual
data by using architectures composed of multiple non-linear
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transformations. Specifically, deep convolutional neural network
(CNN) [25] has demonstrated an extraordinary ability for image clas-
sification [20], [21], [23], [26], [27], [28], [37] on single-label datasets (e.
g., ImageNet [10]) and event detection [42].

More recently, CNN architectures have been adopted to
address multi-label problems. Gong et al. [16] studied and com-
pared several multi-label loss functions for the multi-label annota-
tion problem based on a network structure similar to [23].
However, due to the large number of parameters to be learned for
CNN, an effective model requires lots of training samples. There-
fore, training a task-specific convolutional neural network is not
applicable on datasets with limited numbers of training samples.

Some recent works [6], [11], [15], [17], [30], [33], [34], [36] have
demonstrated that CNN models pre-trained on large datasets with
data diversity, e.g., ImageNet, can be transferred to extract CNN fea-
tures for other image datasets without enough training data. Pierre
et al. [34] and Razavian et al. [33] proposed a CNN feature-SVM
pipeline for multi-label classification. Specifically, global images
from a multi-label dataset are directly fed into the CNN which is pre-
trained on ImageNet, to get CNN activations as the off-the-shelf fea-
tures for classification. Chattield et al. [6] explored the effect of CNN
representations based on different CNN architectures for multi-label
classification task. Simonyan et al. [36] extracted and aggregated
image descriptors over a wide range of scales based on two Very
Deep Convolutional Networks, which achieved the state-of-the-art
performance on the Pascal VOC datasets with SVM classifier.

Besides, Oquab et al. [30] and Girshick et al. [15] presented two
proposal-based methods for multi-label classification and detec-
tion. Although considerable improvements have been made by
these two approaches, they highly depend on the ground-truth
bounding boxes, which may limit their generalization ability when
transferred to a new multi-label dataset without any bounding box
information. Specifically, all hypotheses with >0.5 IoU overlap
with a ground-truth box are treated as positives for the category of
that box and the rest are treated as negatives in [15]. These labeled
hypotheses are then utilized to fine-tune the pre-trained CNN. In
contrast, the proposed HCP infrastructure requires no ground-
truth bounding box information for training and is robust to the
possibly noisy and/or redundant hypotheses. Different from [15],
[30], no explicit hypothesis label is required during the training
process. Instead, a novel hypothesis selection method is proposed
to select a small number of high-quality hypotheses for training.

3 HYPOTHESES-CNN-POOLING

Fig. 2 shows the architecture of the proposed Hypotheses-CNN-
Pooling (HCP) deep network. We apply the objectness detection
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Fig. 2. An illustration of the infrastructure of the proposed HCP. For a given multi-label image, a set of input hypotheses to the shared CNN is selected based on the pro-
posals generated by the state-of-the-art objectness detection techniques, e.g., BING [9] or EdgeBoxes [44]. We feed the selected hypotheses into the shared CNN and
fuse the outputs into a c-dimensional prediction vector with cross-hypothesis max-pooling operation, where c is the category number of the target multi-label dataset. The
shared CNN is firstly pre-trained on the single-label image dataset, e.g., ImageNet and then fine-tuned with the multi-label images based on the squared loss function.
Finally, we retrain the whole HCP to further fine-tune the parameters for multi-label image classification.
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technique, e.g., BING [9] or EdgeBoxes [44], to produce a set of
candidate object windows. A much smaller number of candidate
windows are then selected as hypotheses by the proposed
hypotheses selection method. The selected hypotheses are fed into
a shared convolutional neural network (CNN). The confidence
vectors from the input hypotheses are combined through a fusion
layer with max pooling operation, to generate the ultimate multi-
label predictions. In specific, the shared CNN is first pre-trained
on a large-scale single-label image dataset, i.e., ImageNet and
then fine-tuned on the target multi-label dataset, e.g., Pascal VOC,
by using the entire image as the input. After that, we retrain the
proposed HCP with squared loss function for the final prediction.

3.1 Hypotheses Extraction

HCP takes an arbitrary number of object segment hypotheses as the
inputs to the shared CNN and fuses the prediction of each hypothe-
sis with the max pooling operation to get the ultimate multi-label
predictions. Therefore, the performance of the proposed HCP
largely depends on the quality of the extracted hypotheses. Never-
theless, designing an effective hypotheses extraction approach is
challenging, which should satisfy the following criteria:

High object detection recall rate. The proposed HCP is based on
the assumption that the input hypotheses can cover all single
objects of the given multi-label image, which requires a high detec-
tion recall rate.

Small number of hypotheses. Since all hypotheses of a given multi-
label image need to be fed into the shared CNN simultaneously,
more hypotheses requires more computational resources (e.g.,
RAM and GPU). Thus a small hypothesis number is preferred for
an effective hypotheses extraction approach.

High computational efficiency. As the first step of the proposed
HCP, the efficiency of hypotheses extraction will significantly
influence the performance of the whole framework. With high effi-
ciency, HCP can be easily integrated into real-time applications.

In summary, a good hypothesis generating algorithm should
generate as few hypotheses as possible in an efficient way and
meanwhile achieve as high recall rate as possible.

During the past few years, many objectness proposal (hypothesis)
methods [1], [2], [4], [9], [38], [44] have been proposed to generate a
set of hypotheses to cover all independent objects in a given image.
We experimentally adopt two proposal methods, i.e., BING [9] and
EdgeBoxes [44], for hypotheses generation due to their high compu-
tational efficiency and high object detection recall rate. Although the
number of hypotheses generated by BING or EdgeBoxes is very small
compared with a common sliding window paradigm, it is still very
large for HCP training. To address this problem, we propose a
hypotheses selection (HS) method to select hypotheses from the gen-
erated proposals. Denote the generated hypothesis bounding boxes
for a given image as H = {hy, ho, ..., h,}, where n is the hypothesis
number. An n x n affinity matrix W is constructed, where W;; (i, j
< = n) is the IoU scores between h; and h;, which can be defined as

(€V)

where |-| is used to measure the number of pixels. The normalized
cut algorithm [35] is then adopted to group the hypothesis bound-
ing boxes into m clusters. As shown in Fig. 3b, different colors indi-
cate different clusters. We empirically filter out those hypotheses
with small areas (<900 pixels) or with high height/width (or
width/height) ratios (>4), as those shown in Fig. 3c with red
bounding boxes. For each cluster, we pick out the top 1 hypothesis
with the highest predictive score generated by BING or EdgeBoxes,
and resize it into a square shape. As a result, m hypotheses, which
are much fewer than those directly generated by proposal meth-
ods, will be selected as the inputs of HCP for each image.

VOL. 38, NO.9, SEPTEMBER 2016

1903

Fig. 3. (a) Source image. (b) Hypothesis bounding boxes generated by BING. Dif-
ferent colors indicate different clusters, which are produced by normalized cut. (c)
Hypotheses directly generated by the bounding boxes. (d) Hypotheses generated
by the proposed HS method.

3.2 Training HCP

In the proposed HCP, any state-of-the-art CNN model [23], [28],
[36], [37] can be employed as the shared CNN. Take Alex Net [23]
as an example, which contains five convolutional layers and three
fully-connected layers with 60 million parameters. Without enough
training images, it is very difficult to obtain an effective HCP model
for multi-label classification. However, to collect and annotate a
large-scale multi-label dataset is generally difficult. Fortunately, a
large-scale single-label image dataset, i.e., ImageNet, can be used
to pre-train the shared CNN for parameter initialization, since each
multi-label image is firstly cropped into many hypotheses and
each hypothesis is assumed to contain at most one object based on
the architecture of HCP.

The initialization process of HCP mainly includes two steps.
First, the shared CNN is initialized with the parameters pre-trained
on ImageNet. Second, the final fully-connected layer of the net-
work (which is trained for 1000-way ImageNet classification) is
replaced with a c-way fully-connected layer, where c is the cate-
gory number of the target multi-label dataset, and an image-fine-
tuning (I-FT) process is adopted to initialize the final fully-con-
nected layer by utilizing the target multi-label image set as inputs.

After the initialization, hypotheses-fine-tuning (H-FT) is carried
out based on the proposed HCP framework. Specifically, all the m
hypotheses as elaborated in Section 3.1 for the training image are
fed into the shared CNN. To suppress the possibly noisy hypothe-
ses, a cross-hypothesis max-pooling is carried out to fuse the out-
puts into one integrative prediction. Suppose v;(i = 1,...,m) is the
output vector of the " hypothesis from the shared CNN and

v (j=1,...,¢c) is the j/ component of v;. The cross-hypothesis

max-pooling in the fusion layer can be formulated as

oY) =max<v(1j),v(2j),...,vg)), (@)
where v'/) can be considered as the predicted value for the j" cate-
gory of the given image.

It should be noted that I-FT is an important step for HCP training.
The reason is that, for each ground truth label, one instance shall be
selected to represent this class after cross-hypothesis max-pooling
operation. Without reasonable parameters for the last fully-con-
nected layer, the initial link may be incorrect, which may cause the
CNN model stuck at a local optimum. In addition, the cross-hypoth-
esis max-pooling is a crucial step for the robustness of the whole
HCP framework to the noise. If one hypothesis contains an object,
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Fig. 4. An illustration of the proposed HCP for a VOC 2007 test image. The second
row indicates the generated hypotheses. The third row indicates the predicted
results for the input hypotheses. The last row is the predicted result for the test
image after cross-hypothesis max-pooling.

the output vector will have a high response (i.e., large value) on the
j"™ component, meaning a high confidence for the corresponding ;'
category. With cross-hypothesis max-pooling, large predicted values
corresponding to objects of interest will be preserved, while the val-
ues from the noisy hypotheses will be suppressed.

For both I-FT and H-FT, we experimentally utilize the squared
loss as the loss function. Suppose there are N images in the multi-
[Yi1, Yo, - - -, Yic] is the label vector of the i

,¢) if the image is annotated with class j, and
;th

label image set, and y; =
image.y;; =1(j=1,.
otherwise y;; = 0. The ground -truth probability vector of the i
image is defined as p; = y;/||y;||, and the predictive probability vec-
tor is p; = [pi1,pi2, - - -, Pic)]- And then the cost function to be mini-
mized is defined as

c

N
Z (pix — Par)” 3)

i=1 k=1

For I-FT, the last fully-connected layer is randomly initialized
with a Gaussian distribution G(u,0)(u = 0,0 = 0.01). The learning
rates of the last fully-connected layer and other layers are experi-
mentally initialized as 0.01 and 0.001, respectively. For H-FT, the
learning rates of the last fully-connected layer and other layers
are set as 0.001 and 0.0001. We carry out 30 training epoches for
both I-FT and H-FT, and decrease the learning rates to one tenth of
the current ones after every 10 epoches. The momentum and the
weight decay are set as 0.9 and 0.0005.

3.3 Multi-label Classification for Test Image

Based on the trained HCP model, the multi-label classification of a
given image can be summarized as follows. We first generate the
input hypotheses of an given image based on the hypothesis extrac-
tion method. Then, for each hypothesis, a c-dimensional predictive
result can be obtained by the shared CNN. Finally, we utilize the
cross-hypothesis max-pooling operation accompanied with soft-
max to produce the final prediction. As shown in Fig. 4, the second
row and the third row indicate the generated hypotheses and the
corresponding outputs from the shared CNN. For each object
hypothesis, there is a high response on the corresponding category
(e.g., for the first hypothesis, the response on car is very high). After
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TABLE 1
The Improvements of Hypothesis Fine-Tuning
Based on Two Kinds of Shared CNNs (mAP in %).

Shared CNN AlexNet VGG Net
VOC 2007 I-FT 74.4 84.5
HCP 82.7 90.9
Improvement 8.3 6.5
VOC 2012 I-FT 74.7 84.8
HCP 81.8 90.5
Improvement 7.1 5.7

cross-hypothesis max-pooling operation, as indicated by the last
row in Fig. 4, the high responses (i.e., car, horse and person), which
can be considered as the predicted labels, are preserved.

4 EXPERIMENTAL RESULTS

4.1 Datasets and Settings

We evaluate the proposed HCP on the PASCAL Visual Object Clas-
ses Challenge (VOC) datasets [13], which are widely used as the
benchmarks for multi-label classification. In this paper, PASCAL
VOC 2007 and VOC 2012 are employed for experiments. These two
datasets, which contain 9,963 and 22,531 images respectively, are
divided into frain, val and test subsets. We conduct our experiments
on the trainval/test splits (5,011/4,952 for VOC 2007 and 11,540/
10,991 for VOC 2012). The evaluation metric is Average Precision (AP)
and mean of AP (mAP), complying with the PASCAL challenge pro-
tocols. We experimentally validate the proposed method based on
two CNN models, i.e., Alex Net [23] and VGG Net (16 layers) [36].
We directly apply the parameters pre-trained by Jia et al. [22] and
Simonyan et al. [36] with 1,000 ImageNet classes to initialize the
CNN models. For hypothesis-fine-tuning, the number of bounding
box clusters m is set as 15. Detailed justifications of model compo-
nents are provided in the supplementary material. All experiments
are conducted on one NVIDIA GTX Titan GPU with 6GB memory
and all our training algorithms are based on the code provided by
Jia etal. [22].

4.2 Image Classification Results

Comparison with I-FT. Table 1 shows the details of improvement
from I-FT to HCP. It can be observed that, based on the proposed
HCP framework, the classification performance can be further
improved by at least 5.7%. The results of I-FT and HCP are based
on using single center crop and 500 Edgeboxes hypotheses for test-
ing, respectively. Fig. 5 shows an example of the testing results
based on different models. It can be seen that there are three
ground-truth categories in the given image, i.e., car, horse, person. It
should be noted that the car category is not detected during image-
fine-tuning while it is successfully recovered in HCP. This may be
because the proposed HCP is a hypotheses based method and both
foreground (i.e., horse, person) and background (i.e., car) objects can
be equivalently treated. However, during the I-FT stage, the entire
image is treated as the input, which may lead to ignorance of some
background objects. We also test the I-FT model by using 500
hypotheses, but the improvement is very limited. Please refer to
the supplementary material for more details .

Comparisons of using different number of hypotheses for testing.
Table 2 shows the testing results by varying the number (from 50
to 500) of hypotheses during the testing stage on VOC 2007. We
compare BING [9]' with Edgeboxes [44] based on Alex Net and

1. Our method is independent of the ground-truth bounding box. Therefore,
to train the object detector of BING, the detection dataset of ILSVRC 2013 is used
as augmented data. We removed those images which are semantically overlap-
ping with PASCAL VOC categories and randomly selected 13,894 images for
training.
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TABLE 2
Classification Results (mAP in %) by Varying the Number
of Hypotheses During the Testing Stage on VOC 2007

Number Alex Net VGG Net
BING EdgeBoxes BING EdgeBoxes
T-50 81.0 81.1 89.9 89.9
T-100 81.6 81.7 90.3 90.3
T-150 81.9 82.0 90.4 90.6
T-200 82.1 82.3 90.5 90.7
T-250 82.1 82.4 90.5 90.8
T-300 82.1 82.4 90.6 90.8
T-400 82.1 82.6 90.6 90.8
T-450 82.1 82.6 90.6 90.9
T-500 82.2 82.7 90.6 90.9

VGG Net. It can be observed that EdgeBoxes performs slightly
better than BING. In addition, along with the decreasing of the
hypothesis number, the performance of both proposal generators
is very stable (from 500 to 50, only 1%~1.6% drop). Therefore,
even with a little number of hypotheses, our method can still
achieve satisfactory performance. Specifically, with top-50 hypoth-
eses, the performance is 89.9% based on VGG Net. This result still
outperforms [36] (i.e., 89.3%) and the testing for one image can be
done within 2s.

Comparison with the state-of-the-art methods. Table 3 and Table 4
report our experimental results compared with the state-of-the-arts
on VOC 2007 and VOC 2012, respectively. The upper and the
bottom parts of Table 3 and Table 4 show the results produced by
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Fig. 5. (a) The predicted result based on I-FT model. (b) The predicted result based
on HCP model.

single model and combined models, respectively. Besides, the
methods marked with * are those using additional images, i.e.,
ImageNet, for training. All our results are obtained by utilizing
top-500 hypotheses of each testing image generated by Edgeboxes

TABLE 3
Classification Results (AP in %) Comparison for State-of-the-Art Approaches on VOC 2007 Test

aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv. = mAP
Single Model:
INRIA[19] 772 693 562 66.6 455 681 834 53.6 583 51.1 622 452 784  69.7 86.1 524 544 543 758 621 635
AGS[12] 822 83.0 584 761 564 775 888 69.1 622 61.8 642 513 854 80.2 91.1 481 617 677 863 709 71.1
AMM][7] 845 815 650 714 522 762 872 685 638 558 658 556 848 77.0 91.1 552 60.0 69.7 836 770 713
Razavian et al.* [34] 885 81.0 835 820 420 725 853 81.6 599 585 665 778 81.8 788 902 548 711 626 874 718 739
PRE-1000C* [31] 885 81.5 879 820 475 755 90.1 872 616 757 673 855 835 80.0 956 608 768 580 904 779 777
Chatfield et al.* [6] 953 904 925 89.6 544 819 915 919 641 763 749 897 922 86.9 95.2 60.7 829 680 955 744 824
SPP* [20] - - - - - - - - - - - - - - - - - - - 824
VGG-16-SVM* [37] - - - - - - - - - - - - - - - - - - - - 89.3
VGG-19-SVM* [37] - - - - - - - - - - - - - - - - - - - - 89.3
HCP-Alex* 954 90.7 929 889 539 819 918 926 603 793 730 908 89.2 86.4 92.5 669 864 656 944 804 827
HCP-VGG* 98.6 97.1 980 956 753 947 958 97.3 73.1 902 80.0 973 96.1 949 96.3 783 947 762 979 91.5 909
Combined Models:
VGG-16-19-SVM* [37] - - - - - - - - - - - - - - - - - - - - 89.7

TABLE 4
Classification Results (AP in %) Comparison for State-of-the-Art Approaches on VOC 2012 Test

aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv = mAP
Single Model:
NUS-PSLI[44] 973 842 808 853 608 899 868 893 754 778 751 83.0 875 901 950 578 792 734 945 807 822
Zeiler et al.* [44] 9.0 771 884 855 558 858 786 912 650 744 677 878 860 851 909 522 836 611 91.8 761 79.0
PRE-1000C* [31] 935 784 877 809 573 850 816 894 669 738 620 895 832 87.6 95.8 614 79.0 543 88.0 783 787
PRE-1512* [31] 946 829 882 841 603 89.0 844 907 721 868 69.0 921 934  88.6 9.1 643 866 623 91.1 798 828
Chatfield et al.* [6] 96.8 825 915 881 621 883 819 948 703 802 762 929 903 893 952 574 836 664 935 819 832
Oquab et al.* [32] 96.7 88.8 920 874 647 91.1 874 944 749 892 763 937 952 911 97.6 662 912 700 945 837 863
VGG-16-SVM* [37] 99.0 888 959 938 731 921 851 978 795 91.1 833 972 963 945 96.9 63.1 934 750 971 87.1 89.0
VGG-19-SVM* [37] 99.1 887 957 939 731 921 848 977 79.1 90.7 832 973 962 943 96.9 634 932 746 973 879 89.0
HCP-Alex* 977 832 928 885 60.1 887 827 944 658 819 680 926 891 87.6 921 580 86.6 555 925 77.6 81.8
HCP-VGG* 99.1 928 974 944 799 936 898 982 782 949 798 978 970 938 96.4 743 947 719 967 886 905
Combined Models:
VGG-16-19-SVM* [37] 99.1 89.1 96.0 941 741 922 853 979 799 920 837 975 965 947 97.1 637 93.6 752 974 878 89.3
HCP-VGG+[44]* 99.8 948 97.7 954 813 96.0 945 989 885 941 86.0 981 983 973 97.3 76.1 939 842 982 927 93.2
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as inputs. The testing time of Alex Net and VGG Net is about 3s/
image and 10s/image on a GPU including proposal generation
(EdgeBoxes: 0.25s/image).

From the experimental results, we can see that the perfor-
mance from single HCP-VGG model is better than all previous
methods. Specifically, in [36], the pre-trained VGG models are
firstly applied to extract visual features over a wide range of
image scales (Q) € 256,384,512, 640, 768), and then are aggregated
(5 scales and 50 cropped patches for each scale) by averaging to
generate the final image representations, which achieves the state-
of-the-art performance with the SVM classifier. As can be seen
from Table 3 and Table 4, our single model results outper-
form [36], on both model architectures as well as their combined
models. Indicated by Table 2, our single model can reach 90.8%
by using the same number (i.e.,, 250) of hypotheses in testing,
which is 1.5% increase over the single model of [36]. More
detailed comparative analyses are provided in the supplementary
material.

On VOC 2012, some new state-of-the-art results are achieved by
MVMI-DSP and Tencent-BestImage on the public leaderboard?,
whose results are 90.7% and 90.4%, respectively. However, as illus-
trated by their descriptions, both results are obtained through
some combination. To make further improvement, a late fusion
between the predicted scores of HCP-VGG and our previous
model NUS-PSL [12] (which obtained the winner prize of the clas-
sification task in PASCAL VOC 2012) is executed. Incredibly, the
mAP score produced by the combination of these two models can
surge to 93.2%, which outperforms all other methods.

5 CONCLUSIONS

In this paper, we presented a novel Hypotheses-CNN-Pooling
(HCP) framework to address the multi-label image classification
problem. Based on the proposed HCP, CNN pre-trained on large-
scale single-label image datasets, e.g., ImageNet, can be success-
fully transferred to tackle the multi-label problem. In addition, the
proposed HCP requires no bounding box annotation for training,
and thus can easily adapt to new multi-label datasets. We evalu-
ated our method on VOC 2007 and VOC 2012, and verified that sig-
nificant improvement can be made by HCP compared with the
state-of-the-arts. Furthermore, it is proved that late fusion between
outputs of CNN and hand-crafted feature schemes can incredibly
enhance the classification performance.
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