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Abstract—Forward error correction (FEC) codes are widely
studied to protect streamed video over unreliable networks.
Typically, enlarging the FEC coding block size can improve the
error correction performance. For video streaming applications,
this could be implemented by grouping more than one video
frame into one FEC coding block. However, in this case, it leads
to decoding delay, which is not tolerable for real-time video
streaming applications. In this paper, to solve this dilemma, a
real-time video streaming scheme using randomized expanding
Reed-Solomon code is proposed. In this scheme, the Reed-
Solomon coding block includes not only the video packets of
the current frame, but could also include all the video packets
of previous frames in the current group of pictures. At the
decoding side, the parity-check equations of the current frame
are jointly solved with all the parity-check equations of the
previous frames. Since video packets of the following frames
are not encompassed in the RS coding block, no delay will be
caused for waiting for the video or parity packets of the following
frames both at encoding and decoding sides. Experimental results
show that the proposed scheme outperforms other real-time error
resilient video streaming approaches significantly, specifically, for
the Foreman sequence, the proposed scheme could provide 1.5
dB average gain over the state-of-the-art approach for 10% i.i.d
packet loss rate, whereas for the burst loss case, the average gain
is more than 3 dB 1.

Index Terms—video streaming, randomized expanding Reed-
Solomon, forward error correction, real-time, error resilient

I. INTRODUCTION

REAL-TIME video steaming in lossy network environ-
ments, whether it is wireless or wired, is a challenging

task. High compression ratio video coding, which gains from
the prediction based motion estimation and entropy coding,
makes the coded streams sensitive to transmission losses. In
fact, distortions caused in one frame or even a portion of a
frame will propagate to the following frames, which will result
in serious degradation of the reconstructed video quality [1],
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[2]. Therefore, the study of error resilient techniques for video
coding and video streaming is an important task.

There have been many error resilient techniques proposed
to meet the requirements of video streaming over unreliable
networks, and an overview of error resilient techniques is
presented in [3]. One category of error resilient techniques
uses intra macroblock (MB) refreshment [4], [5] to stop error
propagations; and later in [6], [7], not only the intra coding
modes but also the motion prediction paths are optimally
chosen to minimize the error propagations by taking the lossy
network conditions into consideration. One advantage of these
approaches is that no delay will be caused 2, making them
suitable for real-time video streaming applications. However,
the coding efficiency of intra mode is much lower than inter
mode, therefore the overall coding efficiency is compromised,
nevertheless in [8], it is reported that if intra coding is twisted
with redundant coding in a good manner, the error resilient
performance could be improved. Another category of error
resilient video streaming techniques are based on feedback
information, including Automatic Repeat reQuest (ARQ) [9]–
[11] and feedback-based Reference Picture Selection (RPS)
[12], [13]. These techniques usually cause long delay because
of the network round-trip time, and consequently they cannot
be employed for real-time applications. The third category
of error resilient techniques use the concept of redundant
picture/slice coding with equal or lower quality [8], [14],
[15], which was used in multiple description coding (MDC)
[16], [17]. For the redundant picture/slice coding and MDC
schemes, usually no delay is caused, but when the redundant
version is used to replace the primary one or some of the
descriptions are lost during transmission, there will be mis-
match error and it will propagate all over the group of pictures
(GOP). Whereas for the approaches that use the forward error
correction (FEC) coding with unequal loss protection [18],
[20], [21], the delay depends on the FEC coding block size. In
fact, the need to wait for the whole FEC coding block in order
to recover a lost packet means that an extra delay will be intro-
duced. In [18], the Reed-Solomon (RS) coding block includes
the whole GOP, and one GOP of delay is caused. Another work
that use unequal error protection based on frame dependency
is [19], where the encoding unit includes all the data of one
GOP, so one GOP of delay is caused. In [20], the RS coding
block contains one block of packets (BOP) generated from
different frames, and unequal loss protections are allocated for
different packets based on both the frame position in the GOP
and the data partition it belongs to. For this approach, one

2With the term delay, we refer to the elapsed time between receiving packets
of a frame (in the first attempt of sending) and the time the video decoder
starts decoding them at the receiver side.
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BOP of delay is caused, i.e., the delay depends on the length
of the BOP. In [21], the RS code is implemented at frame level
using adaptive slice grouping and unequal error protection
(UEP), and no FEC coding delay is created. However, for the
frame level FEC approach, usually the quantity of the source
packets is not large enough for the FEC code to be efficient.
Whereas in [22] a cross-layer adaptive error protection scheme
is proposed, where MAC-layer transmission of real-time video
over wireless local area networks (WLANs) is optimized using
cross-layer optimization, and in [23], the authors used a slice
loss visibility (SLV) model to optimize video transmission
over an orthogonal frequency division multiplexing (OFDM)
system.

For the forward error correction coding schemes, the error
correction performance and the FEC decoding delay are two
contradicting requirements. On one hand, enlarging the FEC
coding block size, i.e., grouping video packets from more
than one video frame, can improve the error correction perfor-
mance, however, this will cause some delay equivalent to the
length of the FEC coding block. On the other hand, small FEC
coding block size, i.e., FEC implemented at frame level, will
cause no delay for waiting for the video or parity packets of the
following frames, however, the error correction performance
is compromised. To solve this problem, in our previous work
[24], [25], we proposed the Dynamic Sub-GOP FEC Coding
(DSGF) approach, where the Sub-GOP, which contains video
packets of more than one video frame, is used as the FEC
coding block. It is found that in the DSGF approach, FEC
codes can stop error propagations efficiently, thereby it could
provide better overall video quality than frame level FEC, yet
no delay will be caused for waiting for the video or parity
packets of the following frames. However, in [24], [25], the
FEC error correction capability can only be used by the last
frame of each Sub-GOP, and consequently the video quality
could fluctuate.

To overcome the previous challenges, in this paper, a
Randomized Expanding Reed-Solomon (RE-RS) scheme is
proposed for real-time video streaming applications. In the
proposed RE-RS scheme, RS parity packets are allocated for
each frame of the GOP. They are generated using the video
packets of the current frame and all the previous frames
of the current GOP. At the decoder side, the parity-check
equations of the current frame will be combined with those of
all the previous frames. The lost packets will be recovered if
the combination of the parity-check equations can be jointly
solved. Thereby, these RS parity packets will not only help
to recover the lost packets of the current frame, but also the
lost packets of the previous frames. It is worth noticing that
recovering the lost packets of the previous frames will not
affect their timely decoding and visualization. In fact, during
their decoding time they will be concealed and displayed, so
their later recovering will help reducing the propagated errors.
In this scheme, no video packets of the following frames
will be used in the current RS coding block, thereby each
frame could be decoded and displayed at its display time,
and no extra delay will be needed to wait for the source and
parity packets of the following frames. Moreover, for the RE-
RS scheme, there will be no frame-by-frame video quality

fluctuation problem that affects the DSGF [25] approach,
and more in general Sub-GOP based approaches. It is worth
mentioning that sliding window [26] and expanding window
[27], [28] fountain code protection for SVC [29] have already
been proposed, where they target layered hierarchical data, i.e.,
SVC. To the best of our knowledge, twisting the expanding
window RS code with the reference updating technique for
real-time steaming of non-layered data, i.e., H.264/AVC date,
is novel. In [26]–[28], the LT or Raptor code was used.
However, with the introduction of the RaptorQ code [30] the
performance of these methods would be improved, given that
RaptorQ code requires less overhead.

The contribution of this paper is many fold: firstly, the
expanding window RS code is introduced in combination
with the reference buffer updating technique for real-time
video streaming applications. Secondly, in order to ensure
that the equations of different windows could be jointly RS
decoded, so as to increase the probability of recovering current
and previous losses, we proposed a randomized RS code for
the expanding window approach. Thirdly, we investigated the
parity allocation problem in the new paradigm of expanding
window RS code for video data, and it has been found that
evenly allocating the parity packets among frames is a simple
yet efficient method. Fourthly, a simplified sliding window
scheme is proposed to lower the computational complexity
and the memory requirement without compromising its error
resilient performance too much.

The rest of the paper is organized as follows. A brief review
of systematic RS code is provided in Section II. In Section III
the proposed RE-RS scheme is presented in detail. In Section
IV some experimental results validating the proposed approach
are given. Finally, some conclusions are drawn in Section V.

II. SYSTEMATIC REED-SOLOMON ERASURE CODE

In this section, we will recall some concepts and theory
about systematic Reed-Solomon (RS) erasure code, which will
be used throughout this paper. The systematic RS erasure code
has been widely studied as application layer FEC code to
protect data packets against losses in packet erasure networks.
In RS (N,K) code, for every K source packets, N−K parity
packets are generated to make up a codeword of packets, with
a total length of N packets. As long as a client receives at least
K out of the N packets, it can recover all the source packets. If
the received packet number is less than K, the received source
packets can still be used, because they have been kept intact
by the systematic RS encoding process. For the RS (N,K)
code, the N and K could be any positive integer under the
following constraint: {

N ≤ 2m − 1
K < N

(1)

where m is the number of bits in a symbol. When N < 2m−1,
it is referred to as the short form of the code. In this case, 2m−
1−N zero padding packets are added to the K source packets,
which makes the total number of packets 2m − 1 + K − N
before RS coding, we will call this the full length source code.
The RS code will add N − K parity packets, which makes
the total packet number 2m − 1. After encoding, the padded
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zero packets are removed to form a so called shortened Reed-
Solomon code, whereas at the decoder side these zeros are
re-inserted. Let us assume the systematic RS code is C =
(c1, c2, . . . , cn) where n = 2m−1, and among them t symbols
are lost at the decoder side with their indexes being i1, i2, . . . ,
it. Thus, ci1 = X1, ci2 = X2, . . ., cit = Xt are the t lost
variables. The decoder will try to recover the lost packets by
solving the parity-check equations:

CHT = 0 (2)

where H is the parity-check matrix, and it could be denoted
as follows:

H =


1 α . . . α2m−3 α2m−2

1 α2 . . . (α2)
2m−3

(α2)
2m−2

...
...

...
...

1 αN−K . . . (αN−K)
2m−3

(αN−K)
2m−2


(3)

with α being the primitive element of Galois Field GF (2m).
Since H is a full rank matrix and its rank is N −K, so (2)
could be solved when the variable number is not more than
N − K, which also means that it can recover up to N − K
erased symbols.

III. RANDOMIZED EXPANDING REED-SOLOMON SCHEME

For real-time FEC video streaming applications, one com-
mon approach is to perform RS coding in frame level, which
means that the RS coding block contains video packets from
the same video frame. Under this constraint, to recover the lost
packets, the RS decoder does not need to collect source packets
of many frames, therefore there will be no decoding delay. To
analyze this approach, that will be used for comparison, let us
assume the GOP length is L frames, and the i-th frame has
S(i) source packets and R(i) RS parity packets. If we want
to have even distribution of the parity packets among all the
GOP frames, then R(i)/S(i) needs to be almost constant over
all the GOP’s frames. In general, the number of generated
slices per frame, S(i), varies from frame to frame due to
different level of motion level and texture complexity, and
because the number of parity packets to be inserted, R(i),
should be integer, so we can write R(i) as following:

R(i) =

{
⌈µS(1)⌉ if i == 1⌈
µ
∑i

k=1 S(k)
⌉
−

∑i−1
k=1 R(k) if i > 1

(4)

where µ = (N − K)/K is the redundant packet rate of RS
code, and operation ⌈X⌉ is used to get the minimum integer
number greater than or equal to X . In this case, using formula
(4) makes the average inserted redundant packet rate among
several frames approach µ. Since in this approach, the RS
parity packets are almost evenly allocated among all the video
frames, so this will be called Evenly FEC in the following. An
simplified example of the Evenly FEC is shown in Figure.1-
(a), where for ∀i S(i) = 4, and µ = 0.5.

For the Evenly FEC, there are two fundamental problems
that make its error correction performance low:

1) The number of video source packets generated in each
frame is small, which makes the RS code inefficient. To

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

Frame 1 Frame 2 Frame 3 

12 

13 

14 

15 

Frame 4 

16 

1-1 

1-2 

2-1 

2-2 

Video packet 

RS parity packet 

3-1 

3-2 

4-1 

4-2 

(a) Evenly FEC

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

Frame 1 Frame 2 Frame 3 

12 

13 

14 

15 

Frame 4 

16 

8 RS parity 

packets 

1-1 

…
 

1-8 

(b) Sub-GOP based FEC

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

Frame 1 Frame 2 Frame 3 

12 

13 

14 

15 

Frame 4 

16 

1_1 

1-2 

2-1 

2-2 

3-1 

3-2 

4-1 

4-2 

(c) proposed RE-RS scheme

Figure 1. Examples of different FEC schemes, where each frame has 4 video
packets and redundant packet rate is µ = 0.5. (a) Evenly FEC; (b) Sub-GOP
based FEC; (c) proposed RE-RS scheme.
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Table I
THE REMAINING PACKET LOSS RATE AFTER RS CODE CORRECTION WITH

µ = 0.2, WHERE RS CODING BLOCK SIZE IS K = 5, 10, 15, 20, 30,
NETWORK PACKET LOSS RATE IS p = 5%, 10%, 15%

p K = 5 K = 10 K = 15 K = 20 K = 30
5% 1.13% 0.51% 0.25% 0.13% 0.04%
10% 4.10% 3.03% 2.38% 1.93% 1.32%
15% 8.34% 7.62% 7.20% 6.91% 6.47%

better visualize the effects of K, the number of source
packets, on the error correction capability of the RS
code, Table I lists the remaining packet loss rate, p′,
after the RS code correction, for different values of K.
This table demonstrates that for the same packet loss
rate and redundancy, the smaller the RS coding block
the lower the performance of the RS codes.

2) The error correction capability of the current frame
cannot help to recover the lost packets of the previous
frames, which may cause the distortion of the unrecov-
ered packets in the previous frames propagate to the
current and following frames. Let us take the first two
frames in Figure.1-(a) as an example. Let us assume
three video packets in the first P-frame are lost, while
other packets are received. In this case, the RS code
of the first P-frame will fail to recover the three lost
packets. Meanwhile, as there is no packet loss in the
second frame, its error correction capability will not
be exploited, and it cannot be used to help recovering
the previous losses in the first P-frame. Whereas if this
error correction capability could be exploited to help
to recover the lost packets in the previous frames, then
it might be possible to recover the three lost packets,
and thereby the propagation distortion from the previous
frames will be reduced.

In order to overcome the above problems of the Evenly FEC
scheme, we could come out with two possible solutions that
are described as follows.

A. Sub-GOP Based FEC Scheme

One solution is grouping video packets of one Sub-GOP,
which contains more than one video frame, into one RS coding
block. Figure.1-(b) shows one example for this case. By doing
this, the K value of the RS code will be increased, and
consequently this will improve the performance of the RS
code. However, for this solution, one Sub-GOP of delay will be
caused if the video frames will be decoded and displayed at the
end of its Sub-GOP. On the other hand, if the Sub-GOP based
approach is to be used for the real-time applications where it
is not possible to wait for the video or parity packets of the
following frames, the average video quality might deteriorate
with respect to the approach that tolerates delay. In [25], we
proposed to decode and display the frames in real-time fashion,
and at the end of each Sub-GOP, if the lost packets could be
recovered by the RS code, the reference buffer will be updated
using the recovered information to stop the error propagations.
In this scheme, although the overall performance could be
higher than that of the Evenly FEC, the video quality fluctuates
frame by frame.

B. Proposed RE-RS scheme

Another solution which we propose in this paper is to use
expanding RS code. This scheme is described in Figure.1-(c),
the RS parity packets are generated using the video packets
of the current frame and all the previous frames of the current
GOP. At the decoder side, the parity-check equations of the
current frame will be combined with those of all the previous
frames. The lost packets will be recovered if the combination
of the parity-check equations can be jointly solved. Thereby,
these RS parity packets can not only help to recover the
lost packets of the current frame, but also the lost packets
of the previous frames. In this scheme, no video packets of
the following frames will be used in the current FEC coding
block, thereby each frame could be decoded and displayed at
its proper time, and no extra delay will be caused.

To better illustrate the expanding Reed-Solomon scheme,
one simplified example is drawn. Let us use the first two
frames in Figure 1-(c), where each frame has 4 video packets
and 2 RS parity packets. We assume packets 1, 2 and 3 in the
first frame and packet 5 in the second frame are lost, whereas
other video packets and parity packets of the two frames are
received. In this case, as described in (2), the parity-check
equations for the first frame could be simplified as following:{

X1 + αX2 + α2X3 + C1 = 0
X1 + (α2)X2 + (α2)2X3 + C2 = 0

(5)

and the parity-check equations for the second frame combined
with that of the first frame are as following:

X1 + αX2 + α2X3 + C1 = 0
X1 + (α2)X2 + (α2)2X3 + C2 = 0
X1 + αX2 + α2X3 + α4X5 + C3 = 0
X1 + (α2)X2 + (α2)2X3 + (α2)4X5 + C4 = 0

(6)

where X1, X2, X3 and X5 denote the four lost packets; C1,
C2, C3 and C4 are constant values, which are determined by
the received packets. It should be mentioned that, in order to
recover the lost packets, the above equations should be solved
in Galois Field of GF (2m). Here we should note that in the
first and third equations in (6), the coefficients for X1, X2, X3

are the same, and this also happens for the second and fourth
equations. Therefore, for (5) and (6), the rank of coefficient
matrix is 2 and 3, respectively. Hence, (5) and (6) cannot
be solved with three and four variables, respectively. In other
words, all the four lost packets, in this example, cannot be
recovered.

In order to tackle this problem, we need to increase the rank
of (6) to 4, for this reason we propose to randomly reorder the
video packets and the zero padded packets (if any) before the
RS encoding stage. This is a key step to ensure that, with high
probability the coefficients of the parity-check equations for
different frames are independent, thereby ensure the high error
correction performance of the proposed RE-RS scheme. Let us
see an example where we assume that each symbol has 4 bits,
or in other words, the Galois Field is GF (24), and RS code
(16, 14) is used 3, which means that if we have only 4 source

3This means that at maximal three frames could be protected in this case
study.
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packets, 10 zero packets will be added before generating the 2
parity packets to make the full length RS code. Let us assume
for the first RS window, the randomly reordering positions
for the lost packets {1, 2, 3} become {6, 3, 11}; whereas for
the second RS window the randomly reordering positions for
the lost packets {1, 2, 3, 5} become {7, 1, 4, 12}. In this case,
the combined RS parity-check equations for the second frame
becomes:

α5X1 + α2X2 + α10X3 + C1
′ = 0

(α2)5X1 + (α2)2X2 + (α2)10X3 + C2
′ = 0

α6X1 +X2 + α3X3 + α11X5 + C3
′ = 0

(α2)6X1 +X2 + (α2)3X3 + (α2)11X5 + C4
′ = 0

(7)

In the Galois Field GF (24), the coefficients matrix for (7) is
α5 α2 α10 0
α10 α4 α20 0
α6 1 α3 α11

α12 1 α6 α22

 =


α5 α2 α10 0
α10 α4 α5 0
α6 1 α3 α11

α12 1 α6 α7

 .

It is worth noticing that the rank of this matrix is 4, so it is
full rank matrix, and the equations can be solved. Therefore,
by the second frame all the four lost packets can be recovered.

C. Detailed Procedure of RE-RS Scheme

Since our objective is to design FEC video transmission
system for real-time applications while minimizing the delay
caused by the encoding stage, therefore B-frame will not be
used, so the IPPP GOP structure will be used. This choice
is also justified by the fact that video telephony, the most
commonly used applications for real-time system, typically
uses the baseline profile of H.264/AVC, where only I-frames
and P-frames are used [31]. To make the RS code efficient,
fixed length slice scheme in term of byte, will be used to create
slices. In this method, the macroblocks in each frame will
be scanned in raster-scan order and encapsulated into slices
with the constraint that the size of each slice should not be
more than the target length of the slices, therefore, the length
of all the slices except the last ones in each frame will be
very close to the target length. Whereas the last slice in each
frame will be in general smaller than the target length. Thus,
for slices other than the last one, only very few zero bytes
are padded to reach the target packet length. Whereas for the
last slice in each frame, usually more dummy zero bytes are
used for padding. It is important to note that, in the proposed
scheme, the length of the packets used to encapsulate the RS
parity symbols is similar to the length of the packets used
to encapsulate video slice data, and this latter is dictated by
the Maximum Transmission Unit (MTU) of the underlying
networks. So consequently, throughout this paper, the term
packet and slice are used interchangeably, as one packet per
slice packetization method is adopted.

The RE-RS procedure at the video sender side works as
following:

1) RS parity packets are allocated for each frame in the
GOP using (4); that means the redundancy is evenly
distributed among the GOP frames, and R(i) is the
amount of parity packets inserted for the i-th frame.

2) Video packets of the current frame and all the previous
frames of the current GOP are collected. If the total
video packets number is less than 2m − 1− R(i), zero
padding is used. All video packets are ordered as they
are generated by the H.264/AVC video encoder, where
the zero padding packets are appended after the video
packets. Let us take the second RS window in Figure
1-(c) for example, the order of the video packets is: 1,
2, 3, 4, 5, 6, 7, 8.

3) The 2m− 1−R(i) packets are randomly reordered. Let
us assume that for the i-th frame, the new position for
the k-th packet is Oi(k), and Oi(k) should meet the
following requirements:{

Oi(k) ∈ [1, 2m − 1−R(i)]
Oi(k1) ̸= Oi(k2), ∀ k1 ̸= k2

(8)

Here it is important to note that for different frames,
different reordering maps should be used. Moreover, in
order to make the decoder work properly, the sender and
receiver should have the same maps.

4) R(i) RS parity packets are generated using the reordered
2m−1−R(i) video packets and zero padded packets (if
any). Taking the second RS window in Figure 1-(c) as
example, the generated parity packets are 2-1 and 2-2.

5) Together with the video packets of the current frame,
R(i) RS parity packets are transmitted to the receiver
side.

6) Repeat steps 2-5 for all the video frames in the current
GOP.

At the video receiver side, all the received packets of the
previous frames in the current GOP will be kept in the buffer,
and the decoding procedure of the RE-RS scheme will work
as following:

1) The receiver will collect the video packets of the cur-
rent frame, and together with the previously received
and buffered packets of the current GOP, they will be
reordered using the same reordering map used at the
video sender side.

2) By multiplying the reordered video packets with the
parity-check matrix, the parity-check equations are gen-
erated, as in (2), the parity-check equations for the
current frame include R(i) equations, and they will be
kept for the RS decoding of the following frames in this
GOP.

3) The parity-check equations of the current frame are
combined with all the parity-check equations of the
previous frames of the current GOP. The combined
equations for the i-th frame will include

∑i
k=1 R(k)

equations.
4) If the combined equations could be solved, and conse-

quently if it allows to recover some of the non-recovered
packets in the previous frames, then the frames that
these packets belong to and the following frames will be
video re-decoded with all the recovered packets, and the
reference buffer will be updated with the newly decoded
information. It is worth mentioning that the reference
buffer updating technique was also used to exploit the
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late arrival packets to stop error propagations in [32],
[33]. If the combined equations cannot be solved, then
the current video frame will be video decoded with all
the received video packets and the non-arrived slices will
be concealed, then the reference buffer will be updated.

5) Repeat all the above process for all the video frames in
one GOP.

D. Performance of Randomly Reordering

The performance of the proposed RE-RS scheme critically
depends on removing the linear dependency between the
parity-check equations by randomly reordering the source
packets. In order to show that the randomly reordering is good
for this task, let us take a case study, where the parity packet
number for each frame is 1, the lost packet number in the
first frame is n, and in the following n − 1 frames, there is
no packet loss, which means that their parity packets will be
used to recover the lost packets in the first frame. We assume
that for the expanding window of the u-th frame, the position
of the v-th lost packet after randomly reordering becomes iu,v
(1 ≤ u ≤ n, 1 ≤ v ≤ n ) with 1 ≤ iu,v ≤ 2m − 1, then the
coefficient matrix of the combined parity-check equations of
the first n frames is:

αi1,1−1 αi1,2−1 . . . αi1,n−1

αi2,1−1 αi2,2−1 . . . αi2,n−1

...
...

...
...

αin,1−1 αin,2−1 . . . αin,n−1

 . (9)

Typically n ≪ 2m − 1, which means that the elements of the
generated matrix by the randomly reordering process could be
regarded as being i.i.d selected from the Galois Field GF (2m).
According to [34], the probability that this matrix is full rank

is
n∏

i=1

(
1− (2m − 1)

−i
)

. So for example with m = 8 and

n ∈ [1, 10], this probability is almost 0.9961. From this we
could conclude that using the randomly reordering process
can remove the linear dependency between the parity-check
equations with high probability.

Based on the above finding, we could conclude that it is
reasonable to assume that the randomization process achieves
its objective, and this will also be demonstrated by the results
obtained with the video sequences in the experimental section.
From now on, we will assume that the combined parity-check
equations are linearly independent, this means that if we have
“proper” redundant packet rate, all the lost packets could be
recovered by waiting for several frames so as to accumulate
enough parity packets to solve the equations. In the following,
we will study the time interval needed to wait so as to recover
all the lost packets. To do this, let i represent the index of
the current frame and d(k) to denote the lost parity and video
packet number for frame k, with 1 ≤ k ≤ i. To recover all
the lost video packets by the decoding time of the i-th frame,
the set Φ = {d(k), k ∈ [1, i]} should satisfy the constraint:

C(i) = {Φ|
∑t

j=0 d(i− j) ≤
∑t

j=0 R(i− j), ∀t ∈ [0, i− 1]}
(10)

where R(k) is the number of RS parity packets for the k-th
frame as previously defined. The reason behind this equation

is two fold, the first is that for ∀t ∈ [0, i− 1] the lost packets
among frames [i−t, i] could only be recovered by using the RS
parity packets allocated for these frames, but not the previous
parity packets, i.e., those frames before the (i − t)-th frame;
second, the number of the lost packets should be less than the
allocated RS parity packets among frames [i− t, i]. Later on,
the error correction capability of the following frames could
also be used to recover the lost packets in frames [1, i], thereby,
all the lost packets in frames [1, i] could be recovered by the
time of decoding the j-th frame with j > i, if the following
condition is satisfied:

C ′(i, j) = C(i)
∪

C(i+ 1) . . .
∪

C(j). (11)

This is because for ∀k ∈ [i, j], C(k) insures that all the
lost packets among frames [1, k] could be recovered. To
numerically evaluate the upper bound performance of the
randomization process for parameter setting {S, µ, p}, let us
define the probability that the set {d(k), k ∈ [1, j]} meets the
constraint C ′(i, j) by P (C ′(i, j)). At this point now let us
evaluate the probability P (C ′(i, j)) for a few cases, where
the slice number per frame, redundant packet rate and the
i.i.d average packet loss rate {S, µ, p} are {5, 0.2, 0.1} and
{10, 0.2, 0.05}, and 10000 trials have been carried out for
10 frames. Figure 2 shows the value of P (C ′(i, j)) for this
simulation. It is observed that for the same value of i, the larger
the value of j is, the higher probability P (C ′(i, j)) could be.
This is because for larger j, there are more RS parity packets
in the following frames that could help to recover the lost
packets among frames [1, i]. Moreover, we could notice in
Figure.2-(b), where the average packet loss rate is relatively
small in comparison with the redundant packet rate, and a
large number of packets per frame are generated, it is almost
certain that all the lost packets in previous frames [1, j−3] can
be recovered by frame j. Whereas, in Figure.2-(a) the average
packet loss rate is relatively high and the number of packet
per frame is small, then more time is needed to fully recover
the lost packets.

From practical point of view, it should be mentioned that,
sending the reordering maps to the receiver side costs some
bitrate. Thus, the same reordering maps could be used for
different GOPs. In this case, the overall bitrate cost of sending
the reordering maps could be neglected.

E. Why Evenly Allocating Parity Packets

As described in Section.III, in the proposed RE-RS scheme,
the allocated parity packets are evenly distributed among all
the frames using (4). In this section, the reason for allocating
the parity packets in this fashion will be explained. To simplify
the problem, some assumptions will be used: each P-frame has
the same number of slices; the mismatch distortion caused by
losing each slice is the same; and proper redundant packet
rate is used, which means that after certain number of frames,
all the lost packets could be recovered. At this point, let us
assume a hypothetical scenario in which some packets are lost
among frames [i1, i1+t] whereas other packets of the GOP are
received intact. Given the assumption that a proper amount of
redundancy is inserted, these lost packets could be recovered
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Figure 2. The value of P (C′(i, j)) for different i, j; (a) each frame has
5 slices and 1 parity packet, packet loss model is i.i.d, with packet loss rate
10%; (b) each frame has 10 slices and 2 parity packet, packet loss model is
i.i.d, with packet loss rate 5%.

after w frames. This means that the concealment distortion and
propagated distortion will affect the frames [i1, i1+t+w−1]. If
now hypothetically we assume that the same pattern of errors
affects frames [i2, i2 + t], i2 ̸= i1, and we want to insert a
certain amount of redundancy to recover these losses, then a
question will rise: whether [i1, i1 + t] or [i2, i2 + t] should
be protected more? To answer this, if we take the previous
assumptions into consideration, i.e., the frames [i1, i1+ t] and
[i2, i2 + t] have the same number of slices, and each slice
lose leads to the same amount of mismatch distortion, and
the two groups of frames are randomly chosen, then we could
conclude that neither [i1, i1+t] nor [i2, i2+t] should be favored
in terms of redundancy, therefore the two groups of frames
should be treated equally. In other words, the two groups of
frames should have the same pattern of redundancy. So now
if we generalize this for different t, then we reach a further
conclusion that the pattern of redundancy should be uniform.

In Figure 2.(b) we could see that having uniform redundancy
will lead to constant error propagation window, in other words,
if i ≤ j − 3, then P (C ′(i, j)) ≈ 1. This means that the
distortion will only propagate for no more than 3 frames no
matter the frame position within one GOP is.

F. Sliding Window RS code: A Simplified Solution

The full version of the proposed scheme requires storing
all the video slices and parity packets, so in order to lower
the computational complexity and the memory requirement
for both the RS encoding/decoding and the reference updating
process, one simplified scheme is proposed, where instead of
using the expanding window RS code, sliding window RS
code is adopted. In other words, the RS parity packets will be
generated using the video packets of the current frame and sev-
eral frames before the current frame, for example, W frames,
where W refers to the sliding window size. Accordingly,
at the decoder side, the parity packets in the current frame
can help to recover the lost packets within its window. The
sliding window scheme is based on the assumption that when
proper among of parity packets are inserted, for the current
frame i, with high probability all the lost packets before this
window, i.e., before frame i−W+1, are already recovered, so
whether or not the RS coding block includes packets before
frame i −W + 1 will make no difference. Otherwise, it will
fail to recover the lost packets within this window. So this
scheme will sacrifice the error resilient performance slightly.
For example, for the reported case in Figure 2.(b), if a sliding
window approach is used, with W ≥ 3, then the performance
will not be sacrificed too much. Moreover, the experimental
results reported in Section IV also show that if proper sliding
window size is used, its performance gap in comparison with
full expanding window approach is not big.

In the proposed system, the decoding process differs from
conventional systematic RS decoding, due to the use of re-
ordering of source packets. It also involves joint decoding/error
correction of codeword packets of both the current and prior
frames. So the fast algorithm of decoder implementation will
be essential for power-constrained devices, and this work is
left for future research.

IV. EXPERIMENTAL RESULTS

Our experimental setting is built on the JM14.0 [35]
H.264/AVC codec 4. CIF video sequence Paris, Foreman, Bus,
Stefan and Mobile are used for the simulations. We selected
these sequences, because they represent different motion and
texture characteristics. The GOP structure is IPPP with 30
frames, the beginning 90 frames of each sequence are used
for simulation unless otherwise noted. The reference frame
number is one, in other words, only the previous frame is
used for prediction. One slice is transmitted in one packet,
taking the MTU of networks into account, we set the target
slice length as 400 bytes [36] unless otherwise noted. Since at
high bitrate, the slice number of one GOP could be large, 10-
bit per RS symbol is used, namely Galois Field of GF (210).

4Matlab code of this work is available for download at
http://www.mmtlab.com
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So the value of N for the RS code (N,K) could be up to
1024, and the value of K depends on N and the per frame
parity packet number evaluated using (4) in Section.III. We
use the average luminance Peak Signal-to-Noise Ratio (PSNR)
to assess the objective video quality, which is denoted as
PSNR(mse), this is obtained by evaluating the Mean Squared
Error (mse) over all the frames and over 200 trials, then the
value of PSNR(mse) is calculated based on the averaged mse.
It is worth mentioning that in all the following reported results,
the bitrate includes both the video and parity packets. In our
previous work [25], it was shown that the performance of
Dynamic Sub-GOP FEC Coding (DSGF) approach is higher
than many state-of-the-art approaches. Therefore, to have fair
comparison we compare our results with DSGF [25] and
Evenly FEC, both of which meet the real-time constraint and
cause no additional delay.

In the first set of simulations, we study the effects of
allocating different redundant packet rates for RS code. The
network packet loss is i.i.d random packet loss model; for the
same average packet loss rate p = 10%, we try different RS
redundant packet rates, µ, including {0.3, 0.4, 0.5, 0.6}. We
do simulations with various quantization parameters (QP) to
span a considerable bitrate range. Figure 3 shows the average
PSNR versus bitrate curves with different RS redundant packet
rates µ. In general, the PSNR curve for redundant packet
rate 0.3 is much lower than other cases. The PSNR curves
for µ = {0.4, 0.5} are very close; while in low bitrate,
higher redundant rate, µ = 0.5, can provide slightly better
performance than that of µ = 0.4, and vice versa, in high
bitrate, lower redundant rate, µ = 0.4, is slightly better. This
is because in low bitrate, the slice number in each frame is
small, which makes the performance of RS code low, and
high RS redundant packet rate is required to compensate
for this. For the PSNR curve of µ = 0.6, although at low
bitrate its performance is similar as that of µ = {0.4, 0.5},
it is less performing in high bitrate. It it worth indicating
that for a fixed total bitrate, higher redundancy means less
bitrate could be used for the video date and vice versa; that is
why having too high redundant packet rate cannot provide the
best performance. In general, the PSNR curves for redundant
rate {0.3, 0.4} are similar; consequently, in the following
simulations, we use RS redundant packet rate µ = 0.4 for the
10% packet loss rate. Using the same methods, it is found
that for packet loss rate p = {5, 10, 15, 20}%, the proper
RS redundant packet rate is µ = {0.2, 0.4, 0.55, 0.7}, which
means that µ should increase almost linearly with p. Therefore,
in later simulations, RS redundant packet rate µ = 4p will be
used. The precise relationship between µ and p is left for future
investigation.

Figure 4 and 5 compare the performance of the three
approaches in term of PSNR versus bitrate and for i.i.d
average packet loss rate of 5% and 10%, respectively. More-
over, the H.264/AVC error free case is reported with the
same H.264/AVC parameters that we used in the other three
approaches, and this serves to show the up-bound of the
performance. Clearly, for all the video sequences, and in the
whole bitrate range, the RE-RS scheme outperforms the other
two approaches significantly. Specifically, for the Foreman
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Figure 3. Average PSNR versus bitrate for various redundant packet rate
µ; CIF Foreman sequence is used; i.i.d average packet loss rate is 10%; RS
redundant packet rate µ includes {0.3, 0.4, 0.5, 0.6}.

sequence and 10% i.i.d average packet loss rate, the proposed
RE-RS scheme could provide 1.5 dB and 3.0 dB average
gain over the DSGF approach and the Evenly FEC approach,
respectively.
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Figure 4. Average PSNR versus bitrate curves; i.i.d average packet loss rate
is 5% and the redundant packet rate µ = 0.2 ; (a) Foreman sequence, (b)
Bus sequence, (c) Stefan sequence, (d) Mobile sequence.

To have a better understanding of the performance of the
proposed RE-RS scheme, in Figure 6, its performance is
compared with two ULP schemes [21], [37]. We select these
two ULP schemes because both of them are implemented
at frame-level, which means that they could be used for
real-time applications, and this shares the same objective as
the proposed RE-RS scheme. Meanwhile, these two ULP
schemes are based on different criteria: [21] is based on
the importance of each macroblock, so more protection is
allocated for important macroblocks, whereas [37] is based
on the concept of data partitioning. To have fair comparison,
the same simulation setting as in [21] is used, where 300
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Figure 5. Average PSNR versus bitrate curves; i.i.d average packet loss rate
is 10% and the redundant packet rate µ = 0.4 ; (a) Foreman sequence, (b)
Bus sequence, (c) Stefan sequence, (d) Mobile sequence.
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Figure 6. Performance comparison between the proposed RE-RS scheme
and two ULP schemes [21], [37] ; CIF Paris sequence; i.i.d 10% average
packet loss rate.

frames of the Paris sequence is used and the packet (slice)
size is 200 byte. The performance curve of [37] is obtained
from [21], which was used as the benchmark. As reported
in Figure 6, the proposed RE-RS scheme outperforms both
the two ULP schemes. The average gap between RE-RS and
[21] is about 1 dB, whereas the performance improvement
over [37] is even larger. Nevertheless, it should be mentioned
that Paris sequence has low movement content, and typically,
error concealment algorithm works well for this kind of video
sequences. So it is expected that for the moderate and fast
movement video sequences, the performance gain of RE-RS
could be even larger.

In Figure 7, with the Foreman and Stefan sequences, the
frame by frame average PSNR curves, which are obtained

by averaging the frame’s mse of all the 200 trials and then
evaluating the per frame PSNR, are plotted for the RE-RS
scheme, Evenly FEC scheme and the DSGF approach. For
the three approaches, the same QP is used to encode the
video sequences, and the same amount of RS redundant packet
rate is inserted to ensure fair comparison. It is shown that
for almost all the frames, the average PSNR of the RE-RS
scheme is higher than that of the Evenly FEC scheme. The
gain increases with frame number, and at the last frame of
the GOP, the average PSNR of the RE-RS scheme could be
up to 5 dB higher than that of the Evenly FEC scheme. In
the first half of the GOP, the peaks of the DSGF fluctuating
PSNR could be as high as that of the RE-RS scheme, however,
the PSNR of the RE-RS scheme is much less fluctuating. In
fact, some PSNR bottoms of the Evenly FEC could be up
to 4 dB lower than that of the RE-RS scheme. Moreover, in
the second half of the GOP, even the PSNR peaks of DSGF
approach fail to approach that of the RE-RS scheme. It is
worth mentioning that similar results are obtained for the Bus
sequence and for the other GOPs of the video sequences. In
Figure 8, the average number of unrecovered packets among
frames [1, i], by the time of decoding frame i, is reported for
Foreman sequence. From this figure it is observed that by the
time of decoding frame i, the average number of unrecovered
packets among frames [1, i] for the proposed method is much
smaller than the other two approaches for most of the frames.
It is also noted that for all the three approaches, the RS code
can recover all the lost packets in the first frame (I-frame),
this is because the number of source packets in I-frame is
large, and consequently the probability that the RS code fails
is almost zero. This also explains why the average PSNR of
the first frame in Figure 7 is higher than the other frames.

In all the previous experiments, i.i.d random packet loss
model is used to simulate the network packet losses. In order
to validate the performance of the proposed RE-RS in different
error distribution models, in Figure 9 the PSNR versus bitrate
curves in Gilbert burst loss model is reported. Since the error
resilient performance of the DSGF approach [25] is much
higher than the Evenly FEC approach, which was reported
in [25], we compare the proposed RE-RS results with the
DSGF approach. As indicated in [38], we set the average
burst length as two. As it is expected, it is found that for
both the RE-RS and DSGF approaches, the PSNR curves in
burst loss environment are lower than that in i.i.d cases. It is
also found that in burst loss cases, the average gain of the RE-
RS scheme over the DSGF approach is 3.4 dB, being larger
than that in i.i.d case, which is 1.5 dB. This is because in
burst loss case, several consecutive packets tend to be lost
together. In this case, with high probability, the RS code fails
to recover the consecutively lost packets. Nevertheless, the
burst packet losses are less catastrophic for the RE-RS scheme,
this is because for the RE-RS scheme, if the RS code fails
to recover the lost packets of the current frame, with high
probability, they will be recovered by the expanding RS block
of the following frames. Then the reference buffer will be
updated, and error propagations will be stopped.

Figure 10 reports the PSNR versus bitrate curves for the
low complexity sliding window schemes in both i.i.d and burst
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Figure 7. Frame by Frame video quality in one GOP; i.i.d average packet
loss rate is 5%, RS redundant packet rate µ = 0.2. (a) Foreman Sequence;
QP = 26. (b) Stefan Sequence; QP = 32.
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Figure 8. The average number of unrecovered packets among frames [1, i] by
the time of decoing frame i; i.i.d average packet loss rate is 5%, RS redundant
packet rate µ = 0.2; Foreman Sequence; QP = 26.
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Figure 9. Average PSNR versus bitrate curves for the Foreman sequence;
average packet loss rate is 10%, including i.i.d packet loss model and Gilbert
burst packet loss model; for burst loss the average burst length is two.

packet loss environments. It is noted that, for both i.i.d and
burst packet loss models, the simplified sliding scheme outper-
forms the DSGF approach in all the bitrate range. Moreover,
for the i.i.d case and in high and intermediate bitrate, the
performance of sliding window scheme with window size of
4 is nearly the same as that of expanding window scheme,
which suggests that for this simulation scenario RS window
size of 4 frames are enough to recover most of the lost packets.
The PSNR gap between the sliding window scheme and the
expanding window scheme is larger in the burst loss case than
in the i.i.d case, this is because burst packet losses are more
difficult to recover, then it usually needs longer sliding window
size. Meanwhile, in general, this gap is smaller in high bitrate
than in low bitrate for both i.i.d and burst cases, because in
high bitrate, the video packet number in each frame is large,
which makes the RS code more efficient.

V. CONCLUSIONS

Facing one dilemma of traditional forward error correction
coding of video streams, which is either low error correction
performance or long FEC decoding delay, in this paper, a
real-time error resilient video streaming scheme, named Ran-
domized Expanding Reed-Solomon code, has been proposed.
In this scheme, the RS coding block includes not only the
video packets of the current video frame but also all the video
packets of the previous frames in the current GOP. Thus, the
error correction capability of the current frame could also be
exploited to recover the lost packets of the previous frames.
Therefore, the error propagations from the previous frames
could be reduced significantly. To make the parity-check
equations of the frames linearly independent, the randomly
reordering technique has been proposed. Experimental results
demonstrated that the proposed Expanding RS code scheme
had considerable practical value for real-time video streaming
applications.
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Figure 10. Average PSNR versus bitrate curves for expanding window and
sliding window schemes; sliding window size 4, 5 and 6; Foreman sequence;
(a) 10% i.i.d average packet loss rate, the redundant packet rate µ = 0.4; (b)
10% burst packet loss, average burst length is 2, the redundant packet rate
µ = 0.4.

ACKNOWLEDGMENT

The authors would like to thank Associate Editor Prof.
Eckehard Steinbach and the anonymous reviewers for their
valuable comments and suggestions, which help to improve
the paper significantly.

REFERENCES

[1] S. Wenger, “H.264/AVC over IP,” IEEE Transactions on Circuits and
Systems for Video Technology, vol. 13, no. 7, pp. 645 – 656, july 2003.

[2] T. Stockhammer, M. Hannuksela, and T. Wiegand, “H.264/AVC in
wireless environments,” IEEE Transactions on Circuits and Systems for
Video Technology, vol. 13, no. 7, pp. 657 – 673, july 2003.

[3] W. Yao, S. Wenger, J. Wen, and A. Katsaggelos, “Error resilient video
coding techniques,” IEEE Signal Processing Magazine, vol. 17, no. 4,
pp. 61 –82, Jul. 2000.

[4] R. Zhang, S. Regunathan, and K. Rose, “Video coding with optimal
inter/intra-mode switching for packet loss resilience,” IEEE Journal on
Selected Areas in Communications, vol. 18, no. 6, pp. 966 –976, Jun.
2000.

[5] Y. Zhang, W. Gao, Y. Lu, Q. Huang, and D. Zhao, “Joint source-channel
rate-distortion optimization for H.264 video coding over error-prone
networks,” IEEE Transactions on Multimedia, vol. 9, no. 3, pp. 445
–454, 2007.

[6] S. Wan and E. Izquierdo, “Rate-distortion optimized motion-
compensated prediction for packet loss resilient video coding,” IEEE
Transactions on Image Processing, vol. 16, no. 5, pp. 1327 –1338, may
2007.

[7] H. Yang and K. Rose, “Optimizing motion compensated prediction for
error resilient video coding,” IEEE Transactions on Image Processing,
vol. 19, no. 1, pp. 108 –118, jan. 2010.

[8] J. Xiao, T. Tillo, C. Lin, and Y. Zhao, “Error-resilient video coding with
end-to-end rate-distortion optimized at macroblock level,” EURASIP
Journal on Applied Signal Processing, vol. 2011, 2011:80.

[9] S. Soltani, K. Misra, and H. Radha, “Delay constraint error control
protocol for real-time video communication,” IEEE Transactions on
Multimedia, vol. 11, no. 4, pp. 742 –751, 2009.

[10] P. Chou and Z. Miao, “Rate-distortion optimized streaming of packetized
media,” IEEE Transactions on Multimedia, vol. 8, no. 2, pp. 390 – 404,
april 2006.

[11] M. Schier and M. Welzl, “Optimizing selective ARQ for H.264 live
streaming: A novel method for predicting loss-impact in real time,” IEEE
Transactions on Multimedia, vol. 14, no. 2, pp. 415 –430, april 2012.

[12] S. Lin, S. Mao, Y. Wang, and S. Panwar, “A reference picture selection
scheme for video transmission over ad-hoc networks using multiple
paths,” in IEEE International Conference on Multimedia and Expo,
2001. ICME 2001. , 2001, pp. 96 – 99.

[13] W. Zia, K. Diepold, and T. Stockhammer, “Complexity constrained
robust video transmission for hand-held devices,” in IEEE International
Conference on Image Processing, 2007. ICIP 2007. , vol. 4, 16 2007-oct.
19 2007, pp. IV –261 –IV –264.

[14] T. Tillo, M. Grangetto, and G. Olmo, “Redundant slice optimal allocation
for H.264 multiple description coding,” IEEE Transactions on Circuits
and Systems for Video Technology, vol. 18, no. 1, pp. 59 –70, 2008.

[15] C. Zhu, Y.-K. Wang, M. Hannuksela, and H. Li, “Error resilient video
coding using redundant pictures,” IEEE Transactions on Circuits and
Systems for Video Technology, vol. 19, no. 1, pp. 3 –14, 2009.

[16] I. Radulovic, P. Frossard, Y.-K. Wang, M. Hannuksela, and A. Hallapuro,
“Multiple description video coding with H.264/AVC redundant pictures,”
IEEE Transactions on Circuits and Systems for Video Technology,
vol. 20, no. 1, pp. 144 –148, 2010.

[17] B. A. Heng, J. G. Apostolopoulos, and J. S. Lim, “End-to-end rate-
distortion optimized md mode selection for multiple description video
coding,” EURASIP Journal on Applied Signal Processing, vol. 2006,
no. 1, p. 12 pages, 2006.

[18] E. Baccaglini, T. Tillo, and G. Olmo, “Slice sorting for unequal loss
protection of video streams,” IEEE Signal Processing Letters, vol. 15,
pp. 581 –584, 2008.

[19] A. Bouabdallah and J. Lacan, “Dependency-aware unequal erasure
protection codes,” Journal of Zhejiang University-Science A, vol. 7, pp.
27–33, 2006.

[20] X. Yang, C. Zhu, Z. G. Li, X. Lin, and N. Ling, “An unequal packet
loss resilience scheme for video over the Internet,” IEEE Transactions
on Multimedia, vol. 7, no. 4, pp. 753 – 765, 2005.

[21] N. Thomos, S. Argyropoulos, N. Boulgouris, and M. Strintzis, “Robust
transmission of H.264/AVC video using adaptive slice grouping and
unequal error protection,” in 2006 IEEE International Conference on
Multimedia and Expo, 2006, pp. 593 –596.

[22] H. Bobarshad, M. van der Schaar, and M. Shikh-Bahaei, “A low-
complexity analytical modeling for cross-layer adaptive error protection
in video over WLAN,” IEEE Transactions on Multimedia, vol. 12, no. 5,
pp. 427 –438, aug. 2010.

[23] L. Toni, P. Cosman, and L. Milstein, “Channel coding optimization based
on slice visibility for transmission of compressed video over OFDM
channels,” IEEE Journal on Selected Areas in Communications, vol. 30,
no. 7, pp. 1172 –1183, august 2012.

[24] J. Xiao, T. Tillo, C. Lin, and Y. Zhao, “Real-time forward error
correction for video transmission,” in 2011 IEEE Visual Communications
and Image Processing (VCIP), nov. 2011, pp. 1 –4.

[25] ——, “Dynamic Sub-GOP forward error correction code for real-time
video applications,” IEEE Transactions on Multimedia, vol. 14, no. 4,
pp. 1298 –1308, 2012.

[26] P. Cataldi, M. Grangetto, T. Tillo, E. Magli, and G. Olmo, “Sliding-
window raptor codes for efficient scalable wireless video broadcasting
with unequal loss protection,” IEEE Transactions on Image Processing,
vol. 19, no. 6, pp. 1491 –1503, june 2010.



Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

12

[27] D. Vukobratovic, V. Stankovic, D. Sejdinovic, L. Stankovic, and
Z. Xiong, “Scalable video multicast using expanding window fountain
codes,” IEEE Transactions on Multimedia, vol. 11, no. 6, pp. 1094 –
1104, oct. 2009.

[28] C. Hellge, D. Gomez-Barquero, T. Schierl, and T. Wiegand, “Layer-
aware forward error correction for mobile broadcast of layered media,”
IEEE Transactions on Multimedia, vol. 13, no. 3, pp. 551 –562, june
2011.

[29] H. Schwarz, D. Marpe, and T. Wiegand, “Overview of the scalable video
coding extension of the H.264/AVC standard,” IEEE Transactions on
Circuits and Systems for Video Technology, vol. 17, no. 9, pp. 1103
–1120, sept. 2007.

[30] M. Luby, A. Shokrollahi, M.Watson, T. Stockhammer, and L. Minder,
RaptorQ Forward Error Correction Scheme for Object Delivery, IETF
RMT draft-ietf-rmt-bb-fec-raptorq-04, Aug. 2010. [Online]. Available:
http://tools.ietf.org/html/draft-ietf-rmt-bb-fec-raptorq-04.

[31] T. Wiegand, G. Sullivan, G. Bjontegaard, and A. Luthra, “Overview of
the H.264/AVC video coding standard,” IEEE Transactions on Circuits
and Systems for Video Technology, vol. 13, no. 7, pp. 560 –576, 2003.

[32] I. Rhee and S. Joshi, “Error recovery for interactive video transmission
over the Internet,” IEEE Journal on Selected Areas in Communications,
vol. 18, no. 6, pp. 1033 –1049, jun 2000.

[33] M. Ghanbari, “Postprocessing of late cells for packet video,” IEEE
Transactions on Circuits and Systems for Video Technology, vol. 6, no. 6,
pp. 669 –678, dec 1996.

[34] J. Brennan and J. Wolfskill, “Remarks on the probability the determinant
of an n×n-matrix over a finite field vanishes,” Discrete mathematics,
vol. 67, no. 3, pp. 311–313, 1987.

[35] http://iphome.hhi.de/suehring/tml/download/.
[36] P. Baccichet, R. Shantanu, and G. Bernd, “Systematic lossy error

protection based on h. 264/avc redundant slices and flexible macroblock
ordering,” Journal of Zhejiang University-Science A, vol. 7, no. 5, pp.
900–909, 2006.

[37] O. Harmanci and A. Tekalp, “Stochastic frame buffers for rate distortion
optimized loss resilient video communications,” in IEEE International
Conference on Image Processing, 2005. ICIP 2005., vol. 1, sept. 2005.

[38] D. Loguinov and H. Radha, “End-to-end internet video traffic dynamics:
statistical study and analysis,” in INFOCOM 2002. Twenty-First Annual
Joint Conference of the IEEE Computer and Communications Societies.
Proceedings. IEEE, vol. 2, 2002, pp. 723 – 732 vol.2.

Jimin XIAO was born in Suzhou, China. He re-
ceived the BS and MEng degrees in telecommuni-
cation engineering from Nanjing University of Posts
and Telecommunications, China, in 2004 and 2007,
respectively. Then he worked as a software engineer
in Motorola (China) Electronics Ltd, and later as
system engineer in Realsil (Realtek) Semiconductor
Corp. Currently, he is persuing his PhD degree in the
University of Liverpool, UK. His research interests
are in the areas of video streaming, image and video
compression, and multiview video coding.

Tammam TILLO (M05-SM12) was born in Dam-
ascus, Syria. He received the Engineer Diploma in
Electronic Engineering from Damascus University,
Damascus, Syria, in 1994, and the Ph.D. in Electron-
ics and Communication Engineering from Politec-
nico di Torino, Torino, Italy, in 2005. From 1999 to
2002 he was with Souccar for Electronic Industries,
Damascus, Syria. In 2004 he was visiting researcher
at the EPFL (Lausanne, Switzerland), and from 2005
to 2008, he worked as a Post-Doctoral researcher at
the Image Processing Lab of Politecnico di Torino,

and for few months he was Invited Research Professor at the Digital Media
Lab, SungKyunKwan University, Suwon, S. Korea. In 2008 he joined Xian
Jiaotong- Liverpool University (XJTLU), Suzhou, China. Currently, he is the
Head of Electrical and Electronic Engineering Department and Acting Head
of Department, Department of Computer Science and Software Engineering at
XJTLU university. His research interests are in the areas of robust image and
video transmission, image and video compression, and hyperspectral image
compression.

Yao ZHAO (M’06-SM’12) received the B.S degree
from Fuzhou University in 1989 and the M.E degree
from the Southeast University in 1992, both from the
Radio Engineering Department, and the PhD degree
from the Institute of Information Science, Beijing
Jiaotong University (BJTU) in 1996. He became an
associate professor at BJTU in 1998 and became a
professor in 2001. From 2001 to 2002, he worked
as a senior research fellow in the Information and
Communication Theory Group, Faculty of Informa-
tion Technology and Systems, Delft University of

Technology, Netherlands. He is now the director of the Institute of Information
Science, Beijing Jiaotong University. His research interests include image
ideo coding, fractals, digital watermarking, and content based image retrieval.
Now he is leading several national research projects from 973 Program, 863
Program, the National Science Foundation of China. He was the recipient of
the National Outstanding Young Investigator Award of China in 2010.


