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Abstract—Content-based video copy detection is very impor-
tant for copyright protection in view of the growing popularity
of video sharing websites, which deals with not only whether a
copy occurs in a query video stream but also where the copy
is located and where the copy is originated from. While a lot
of work has addressed the problem with good performance, less
effort has been made to consider the copy detection problem
in the case of a continuous query stream, for which precise
temporal localization and some complex video transformations
like frame insertion and video editing need to be handled. We
attempt to attack the problem by presenting a frame fusion based
copy detection approach, which converts video copy detection
to frame similarity search and frame fusion under a temporal
consistency assumption. Our work focuses mainly on the frame
fusion stage due to its critical role in copy detection performance.
The proposed frame fusion scheme is based on a Viterbi-like
algorithm, comprising an online back-tracking strategy with
three relaxed constraints. The experimental results show that
the proposed approach achieves high localization accuracy in
both the query stream and the reference database even when
a query video stream undergoes some complex transformations,
while achieving comparable performance compared with state-
of-the-art copy detection methods.

Index Terms—Frame fusion, HMM, video copy detection,
viterbi algorithm.

I. Introduction

CONTENT-BASED video copy detection (CBCD), which
offers an alternative to the watermarking technique,

plays an important role in digital copyright protection, media
tracking, law enforcement investigations, and so on. Normally,
the watermarking technique performs copyright detection by
retrieving the secret information embedded in a target video.
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It means that some secret information must be embedded
before the video archive is distributed. In practice, it may be
difficult to fulfill the requirement since huge amounts of video
data have earlier been distributed without such processing.
Compared to watermarking technology, the CBCD does not
pose any additional requirements [16], which detects a copy
by matching a query video with a reference database [6],
[12], [17].

Generally speaking, CBCD refers to judging whether a
query video contains any content originated from copyright
protected video via some feature extraction and matching tech-
niques [35]. The key challenge in CBCD is how to precisely
localize the pair of a copy and its original clip in both the query
video stream and the reference database despite various video
transformations on the copy. This challenge becomes more
difficult and complicated as the size of reference database
increases. To this end, a lot of work has been done in recent
years. In the earlier work, the main effort focuses on frame
feature extraction and video matching based on the aligned
frames. For example, those reported in [2], [8], [16], [18],
and [24] treat a whole query video as a detection unit and
attempt to match it with all possible subsequences of equal
length within a long reference video, where a threshold is set to
determine if there is a copy or not. However, those schemes fail
if only a small segment in the query video is a copy in many
practical applications [17]. An example is a broadcast stream
in which only some clips are potential copies. Therefore, more
flexible detection methods need to be designed to address
this issue. Recently, frame fusion based methods provide a
possibility to detect copied segments [4], [6], [7], [15]. These
methods first search the reference database and return a list of
similar reference frames for each query frame. Then the copies
can be determined by fusing these returned reference frames
according to a temporal consistency assumption. However,
those methods generally process the query video in batch, that
is, the query frames in one batch need to be parsed beforehand.
This may limit or compromise the application or performance
of those schemes for detecting copies in a continuous query
video stream, such as the broadcast video stream.

To address the above problem, we consider a frame fusion
based copy detection approach, which detects copies by similar
frame search and frame fusion under a temporal consistency
assumption. In this paper, our work focuses mainly on the
critical frame fusion stage that performs copy determination
and temporal localization. The proposed frame fusion scheme
employs a Viterbi-like dynamic programming algorithm which
comprises an online back-tracking strategy with three relaxed
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constraints, namely, emission constraint, transition constraint,
and gap constraint. In particular, when a new query frame is
read and a list of similar reference frames is retrieved for it,
the emission constraint and transition constraint are then used
to build transition relationship between reference frames in
the current list and reference frames in previous lists. Finally
the gap constraint is employed to determine the starting and
ending positions of complete paths. Using the online back-
tracking, we can get a few complete paths at current time
instant, which correspond to the original video clips. Note
that the starting and ending positions indicate the boundaries
of potential copies in the query video stream.

Compared with most existing frame fusion methods, the
proposed frame fusion approach differs in three major aspects
as follows.

1) An online back-tracking strategy to deal with the copy
detection problem in a continuous query video stream.
Instead of processing the query video stream in batch as
done in INRIA-LEAR [4], [5], the back-tracking strategy
detects copies “online” from a continuous video stream.
When a new query frame comes in, the algorithm back-
tracks all the partial best paths at the time instant and
determines whether there is a copy sequence ending at
this time instant. Due to the online processing feature,
the proposed scheme can easily handle the copy detec-
tion problem in a continuous query video stream.

2) Some mechanisms to handle complex transformations
and to tolerate matching offset and misalignment. The
key constraint of frame fusion is the temporal consis-
tency which assumes that similar video clips should be
continuously similar in their aligned frames. However,
it is usually difficult to meet this strict temporal consis-
tency in practice due to some mismatches or offsets in
key frame selection, feature representation, and frame
matching. Instead of using the strict temporal consis-
tency, we replace it with three more relaxed constraints,
namely, emission constraint, transition constraint, and
gap constraint. For example, the transition constraint can
tolerate the matching offset and misalignment by relax-
ing the transition relationship among adjacent frames to
that among frames in the same shot or adjacent shots.

3) A flexible copy determination manner. In addition to
tolerating some video transformations like frame inser-
tion by searching more candidate reference frames, the
introduced gap constraint is also delegated to distinguish
copy clips from non-copy video stream. Unlike previous
work such as INRIA-LEAR [4], [5] which makes a
decision with a threshold, the gap constraint determines
a copy by automatically and accurately localizing its
boundaries in the query video stream without requiring
an explicit threshold. By limiting the transition scope of
returned reference frames, the gap constraint can deter-
mine the starting and ending time instants of potential
copies where no explicit threshold is involved in the
decision making, thus avoiding the difficulty of threshold
selection.

To facilitate the following discussions, we clarify some
terms used in this paper. A copy refers to a video clip origi-

nated from a copyright protected video. “Original video” and
“reference video” are interchangeable throughout this paper,
which mean the copyright protected video. The remainder
of this paper is organized as follows. We first review the
related work for video copy detection in Section II. Section III
presents an overall framework of the proposed CBCD system.
In Section IV, we formulate the frame fusion problem and
present a feasible solution. In Section V, we further refine the
solution by modifying the conventional Viterbi algorithm and
introducing an additional gap constraint. Section VI describes
the experimental setup and evaluation criteria in detail. The
experimental results and analysis are presented in Section VII.
Finally, we conclude this paper in Section VIII.

II. Related Work

Content-based video copy detection involves two key tech-
niques: feature extraction and video matching. We will review
the existing work from these two aspects.

A. Feature Extraction

A copy is usually a transformed version of the reference
clip. That is, the video signal of a copy is distorted from its
original version. Therefore, the features used for copy detec-
tion should not only be distinctive enough for identification but
also be robust enough to tolerate signal distortions. According
to the feature nature, we can classify them into global features
and local features.

Many research studies [2], [3], [8], [16], [24], especially
in the earlier work, have paid much attention to the ex-
traction of global features so as to deal with a variety of
simple signal distortions. For example, Oostveen et al. [24]
proposed a global binary feature for tolerating the changes
in resolution and contrast. Ordinal measure based features
[3], [8], [16] are employed for dealing with color degradation
and change of display format. On the whole, however, global
features are normally based on the statistics of the entire
frame or the whole clip. Although those features are usually
more compact and can be extracted more efficiently, they
can only deal with some simple transformations. For some
post-production transformations such as picture in picture,
they are not workable since partial matching is needed in
these cases. Compared with global features, the local features
are automatically resistant to the transformations caused by
some post-production operations [11] since a part of original
content always remains in the copy. Most of local features
used in CBCD are based on the interest points. Normally,
all the interest points in a frame are detected first, and then
a local descriptor is computed around each interest point.
A lot of methods exist for both interest point detection and
local descriptor calculation. Different combinations construct
different extraction schemes [4]–[6], [11], [12], [29], [33],
[34], [36], [37]. In [1], [6], and [9], for example, a fast Hessian
detector is used to detect the interest points, and a SIFT local
descriptor [20] is computed around each interest point. To
improve the matching efficiency of local features, some efforts
have been made on dimensionality reduction [14], [17] and
local feature selection [11]. Another alternative scheme for
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compacting features is the bag-of-features used frequently in
the latest literature [1], [4], [5]. The key idea is to represent
each frame as an orderless collection of local descriptors
[10]. Usually, a visual word vocabulary is generated first by
clustering a large training set of local features, and each cluster
center is treated as a visual word. Afterward, the local features
in a frame are mapped to those visual words, and then a
visual word histogram is built for representing the frame. A
main advantage lies in that it can generate a more compact
representation as well as keep the partial matching feature.
Moreover, the bag-of-features scheme can facilitate building
index construction for speeding up search process. In our video
copy detection system, we adopt the bag-of-features scheme
in [23].

B. Video Matching

As the other key aspect, video matching plays an important
role in the content-based video copy detection. A lot of match-
ing methods have been proposed in recent years. According
to the difference of matching manner, these matching methods
can roughly be classified into two groups: sequence matching
and frame fusion based matching.

The key idea of sequence matching lies in that two video
clips are matched directly by frame-to-frame matching. Given
a short query sequence Q = (q1,q2, · · · , qN ) and a long refer-
ence sequence R = (r1, r2, · · · , rM), those methods slide the Q
in the matching with R and result in a series of scores between
Q and total (M −N + 1) subsequences of R. Then a judgment
mechanism involving a threshold is employed to determine
whether the query Q is originated from a subsequence of
R. Examples include the matching methods proposed in [2],
[8], [16], [18], and [24]. However, those matching methods
cannot efficiently deal with the scenario where a copy is
only a small segment of the query video. With the sequence
matching, we need to match all the possible subsequences
in both the query and reference videos, which results in
high computational complexity. In addition, it is also difficult
for sequence matching to cope with some post-production
transformations, such as frame dropping, fast/slow motion,
although some attempts [3] have been made to alleviate it.
Moreover, it is usually difficult to find an appropriate threshold
beforehand due to various copy types.

Recently, frame fusion based matching methods [4], [6],
[7], and [15], which provide a more flexible manner for copy
detection, attract increasing attention. Unlike the sequence
matching, the frame fusion based matching avoids directly
matching query video with all equal-length reference clips.
Instead, it first searches the reference database and returns a
list of similar reference frames for each query frame. Then
the copies can be determined by fusing the reference frames
in the returned lists. Previous methods are based mainly on
the statistics of the whole returned reference matches. That is,
the whole query video needs to be processed beforehand. For
example, a 2-D Hough histogram is employed for frame fusion
by accumulating the votes on video identifier and time shift
[4]. However, since the matches of all the query frames need
to be obtained beforehand, this kind of scheme is not suitable
for coping with a continuous query streams. In addition, while

previous schemes pay more attention to detection precision and
similarity search efficiency, they normally skip the localization
precision and frame fusion efficiency.

The proposed frame fusion can smartly overcome these
limitations by combining a back-tracking strategy and three
relaxed constraints into a Viterbi-like algorithm. By dynam-
ically determining the starting and ending time instants of
potential copies, the proposed approach can detect video
copies in an online manner. In fact, similar strategy is also
used for detecting sequential gesture patterns in [31], which
employs a logical DP matching for efficiently detecting similar
subsequences.

C. Copy Detection

A complete detection process normally involves both feature
extraction and video matching. Different combinations form
different copy detection schemes. For example, an initial step
for the sequence matching method is to calculate the distances
between frames in two aligned video clips. Different feature
schemes result in different similarity measurements. Like-
wise, similarity matching between query frames and reference
frames is also required in the frame fusion based matching
method.

However, for frame fusion based matching methods, there
is another key difference among different schemes, that is, the
frame fusion strategy. The performance of different schemes
remains uncertain due to various fusion strategies. Our main
effort just focuses on the critical problem of frame fusion.

III. Overall Framework

Although our work focuses mainly on the frame fusion
phase, we also need a complete video copy detection system
to validate our scheme. The system architecture is illustrated
in Fig. 1. Each component will be detailed in the following
subsections.

A. Keyframe Extraction

It is redundant and time-consuming to process all the frames
within a video, thus the keyframe selection is a necessary
step for improving the efficiency of copy detection. In our
scheme, we combine the shot-based sampling scheme and
the uniform sampling scheme [4] into a unified framework.
First, we partition the reference video into shots using the
method proposed in [25]. Then we uniformly sample each
shot at a fixed sampling rate. In our experiment, we sample
three frames/s. The main feature of this sampling strategy is
that each uniformly sampled frame is associated with a shot
boundary. This boundary information is very important for tol-
erating the matching offset caused by some signal distortions
or the imperfection of low-level features. In addition, the shot
boundary information is also useful for localizing where the
copy is derived from, which will be explained later. Note that
for the query video, we just uniformly sample three frames per
second, while shot detection step is not performed in order to
speed up the query process.
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Fig. 1. Framework of proposed video copy detection system.

B. Feature Extraction

As mentioned in Section II, local features are inherently re-
sistant to the transformations caused by some post-production
operations, such as cropping and shifting. Therefore, our
copy detection system is also based on the local features. In
particular, Hessian-Affine region extractor [22] is employed
to extract the affine-invariant key points for each frame, and
then the SIFT descriptor [20] is used to represent each key
point by a 128-dimensional vector. In our experiments, the
software of [21] is used for both detecting Hessian-Affine
regions and generating SIFT descriptors with default parameter
settings. After that, the bag-of-features approach in [23] is
further employed for compacting the feature representation.
The key idea of this approach is to perform hierarchical k-
means clustering on a training descriptor set to construct a
visual vocabulary where each cluster centriod is treated as
a visual word. Given a new local descriptor extracted from
a frame, it is mapped to a visual word by searching the
nearest centriod in the visual vocabulary. We implemented
this procedure by using the VLFeat package available in [32].
In our experiments, a visual vocabulary with four levels and
100 000 leaf nodes is used for evaluating the proposed method,
and another smaller vocabulary with four levels and 10 000
leaf nodes is employed for validating the effect of description
on the overall detection performance.

To facilitate similarity search and indexing, we further map
each visual word in the vocabulary into a unique pseudo-word.
This means that each visual word is explicitly represented with
a unique text string, and a frame containing lots of descriptors
is transferred to a text document with pseudo-words. In this
way, we can directly index and search visual contents using
the existing tools in the text information retrieval field.

C. Similarity Search and Indexing

As discussed above, pseudo-word text documents are sep-
arately generated for frames in both the query and reference
video. Therefore, some existing similarity matching models
in the text retrieval area can be employed directly. In our
scheme, we adopt the Okapi BM25 scoring function [28], [27],
which represents state-of-the-art scoring function in the text

information retrieval area. Given a query q containing pseudo-
words {w1, w2, . . . , wm}, the Okapi BM25 score ranking a
reference document d is

s(q, d) =
m∑

i=1

RSJ(wi) · f (wi, d) · (k + 1)

f (wi, d) + k ·
(

1 − b + b · |d|
avgdl

) (1)

where f (wi, d) is the term frequency of wi in the document
d, |d| is the length of the document d in pseudo-words, avgdl
is the average length of the documents in the test database.
k and b are free parameters, which are set to 2 and 0.75,
respectively. RSJ(wi) is the Robertson-Sparck Jones weight
[15] of the query term wi, which is computed as follows:

RSJ(wi) = log
(r + 0.5)/(R − r + 0.5)

(n − r + 0.5)/(N − n − R + r + 0.5)
(2)

where N is the total number of documents in the reference
database, n is the number of documents containing wi, R and
r are two parameters related to relevance feedback. Since no
relevance feedback is used in our scheme, we set both R and
r to zero.

Likewise, we also improve the scoring efficiency by building
an inverted table, which stores a mapping from the pseudo-
words to the reference frames. The inverted table is equivalent
to the index database in Fig. 1. In our experiment, we use the
implementation in the Lemur toolkits [19] for both similarity
search and text document indexing.

D. Frame Fusion

For each query frame, a list of similar reference frames
with their scores is returned according to the scoring function
(1). Our purpose is to determine whether the query video
contains a copy derived from the reference video by fusing
the returned reference frames according to the temporal rela-
tionships among them. In this paper, we target at this critical
frame fusion phase, which will be discussed in more detail in
the next two sections.
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IV. Formulation of Frame Fusion

A. Problem Definition

After similarity search, each query frame is associated with
a list of similar reference frames, which is denoted as follows:

Q = (q1, q2, · · · , qt, · · · qT ) (3)

L = (L1, L2, · · · , Lt, · · · LT ) (4)

where qt is the key frame at time instant t of the query
sequence Q, and Lt is the list of similar reference frames
returned for qt . T is the length of the query stream, which
may be a very large number even up to infinite. We assume
that the top most similar reference frames are returned for each
query frame, hence the length of each list is fixed to M.

The frame fusion is to detect possible copies from Q by
fusing the reference frames in the returned lists. Since a copy
is usually a small part of the query sequence, we further define
subsequences for both the query sequence and the sequence
of lists as follows:

Qsub(i, j) = {(qi, qi+1, · · · , qt, · · · qj)|1 ≤ i ≤ T, i ≤ t ≤ j ≤ T }
(5)

Lsub(i, j)={(Li, Li+1, · · · , Lt, · · · Lj)|1 ≤ i ≤ T, i ≤ t ≤ j ≤ T }
(6)

where Qsub(i, j) is a temporally successive subsequence from
time instant i to j in the query sequence Q; Lsub(i, j) is the
corresponding list subsequence of Qsub(i, j).

Therefore, the problem is changed to determining whether
Qsub(i, j) is a copy by fusing the reference frames in Lsub(i, j)
A key step of frame fusion is to reconstruct reference frame
sequences from Lsub(i, j) according to the temporal consis-
tency information. In fact, Lsub(i, j) can be treated as a frame
sequence hypothesis space Hsub(i, j) containing total M(j−i+1)

reference frame sequences with length (j − i + 1), which can
be denoted as

Hsub(i, j) = {(hi, hi+1 · · · , ht, · · · , hj)|1 ≤ i ≤ T,

i ≤ t ≤ j ≤ T, ht ∈ Lt} (7)

where Hsub(i, j) is constructed by concatenating the reference
frames selected from the aligned lists of similar reference
frames; ht is a frame selected from Lt at time instant t.

Let h be a reference frame sequence in the hypothesis
space Hsub(i, j). Now, judging whether Qsub(i, j) is a copy
is equivalent to checking whether there exists a reference
frame sequence h that meets a certain temporal consistency
assumption.

B. Problem Solution

In fact, the frame fusion problem can be further transformed
to the decoding problem of hidden Markov model (HMM)
[26]. The following shows their high similarity in definition.

1) HMM decoding problem: Given a particular emis-
sion sequence Eseq = (e1, e2, · · · , et, · · · eT ) and a
model λ = {Tr, Em}, from state set S = (s1, s2, · · · ,
sn, · · · sN ), how we can find a state sequence h =

(h1, h2, · · · , ht, · · · , hT ) that is most likely to have gen-
erated the emission sequence Eseq. Here, Tr and Em are
the state transition and emission probability matrices,
respectively; ht is a state selected from S at time instant
t of the state sequence h.

2) Frame fusion problem: Given a query subsequence
Qsub(i, j) and a list subsequence Lsub(i, j) under
some constraints, how we can find a reference subse-
quence h = (hi, hi+1, · · · , ht, · · · , hj) that is most likely
to have generated the query subsequence Qsub(i, j).
Here, ht is a frame selected from Lt at time instant t.

We can easily convert the frame fusion problem into HMM
decoding problem. In particular, the query subsequence can be
directly treated as the emission sequence Eseq, and the refer-
ence frame in Lsub(i, j) consitue the state set S after Unique
operation. Here, the Unique symbol denotes the duplicate-
removal operation on Lsub(i, j), by which the corresponding
state set S can be constituted with the remained frames from
Lsub(i, j). The conversion model can be formulated as follows:

Eseq = (qi, qi+1, · · · , qt, · · · , qj) ⇐ (ei, ei+1, · · · , et, · · · , ej)
(8)

S = {s1, s2 · · · , sn, · · · , sN}⇐ Unique{Li, Li+1, · · · , Lt, · · · , Lj}
(9)

H(i, j = {(hi, hi+1, · · · , ht, · · · , hj, )|1 ≤ i ≤ T,

i ≤ t ≤ j ≤ T, ht ∈ S}) (10)

h∗ = argmax
h∈H(i,j)

P(Eseq, h)

= argmax
h∈H(i,j)

P(h) · P(Eseq|h)

= argmax{P((hi, hi+1, · · · , ht, · · · , hj))·
P((ei, ei+1, · · · , et, · · · , ej)|(hi, hi+1, · · · , ht, · · · , hj))}

(11)
where H(i, j) is a superset of Hsub(i, j), and ht is a frame
selected from S.

In our context, P((hi, hi+1, · · · , ht, · · · , hj)) reflects the
transition relationship among the returned reference frames,
whereas P((ei, ei+1, · · · , et, · · · , ej)|(hi, hi+1, · · · , ht, · · · , hj))
implies the similarity measurement between the query se-
quence (qi, qi+1, · · · , qt, · · · , qj) and a reference frame se-
quence (hi, hi+1, · · · , ht, · · · , hj). We employ the first-order
Markov chain to model the transition relationship, which as-
sumes that the present state is only dependent on the previous
state. That is, P(ht|ht−1, · · · , hi = P(ht|ht−1), t = i + 1, · · · , j.
For similarity measurement, since we perform an independent
similarity search for each query frame, P(et|ht), t = i, · · · , j,
are independent of each other. Therefore, we can rewrite the
objective function (11) as

h∗ = argmax
h∈H(i,j)

{P(hi) · P(ei|hi)

·�j
t=i+1 P(ht|ht−1) P(et|ht)}.

(12)

In order to calculate the above objective function, we need to
estimate both P(ht|ht−1) and P(et|ht), i.e., the state transition
probability Tr = (P(sy|sx)|x and y ∈ {1, 2, · · · , N}), and the
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emission probability Em = (P(et|sx)|x ∈ {1, 2, · · · , N}, t ∈
{i, i+ 1, · · · , j}), where N is the total number of states. To this
end, two relaxed constraints are given in the following. Note
that we assume P(sx) follows the uniform distribution. Hence,
P(sx) is set to 1

N
, that is, P(hi) is set to 1

N
.

1) Transition Constraint: According to the strict tempo-
ral consistency assumption, if a query frame subsequence
(qi, qi+1, · · · , qt, · · · , qj) is a copy of a reconstructed refer-
ence frame subsequence (hi, hi+1, · · · , ht, · · · , hj), then the
reconstructed reference frame sequence should be a temporally
successive frame sequence in a reference video. That is,
for any two frames ht−1 and ht, t = i + 1, · · · , j, ht−1 can
transfer to ht if and only if ht is the next frame of ht−1

in the same reference clip. However, there may be some
drawbacks with this assumption. First, a copy is usually a
transformed version of its original video clip, thus it is difficult
to get perfect matches along all the aligned key frames in
two clips due to the limitation of feature representation. We
even cannot align them if the copy is obtained by dropping
some frames from or inserting some frames into its origi-
nal video clip. In addition, adjacent frames in a video clip
are usually perceptually similar with each other due to the
high redundancy of video content. Therefore, even if all the
frames in the sequence (hi, hi+1, · · · , ht, · · · , hj) belong to
the same reference clip and the clip indeed generates the query
sequence (qi, qi+1, · · · , qt, · · · , qj), it is also less possible to
guarantee the reference sequence to be aligned with the query
sequence in the completely correct temporal order. Hence,
we constrain the transition relationship with a more relaxed
assumption. Assume that for any two reference frames (states)
sx and sy, sx can transfer to sy if and only if sx and sy are in
the same shot or in two adjacent shots. In this way, we can
tolerate a certain matching offset. This constraint is described
as follows:

P(sy|sx) =

⎧
⎨

⎩

∂1, sx ∈ Vt and sy ∈ Vt

∂2, sx ∈ Vt and sy ∈ Vt+1

0, otherwise
(13)

where Vt and Vt+1 are two temporally successive shots in the
same reference video; ∂1 and ∂2 are two constants representing
transition probabilities, which are set to 1 and 0.8 in our
experiment, respectively.

2) Emission Constraint: As discussed above, the state set
S consists of all the unrepeated similar reference frames in the
returned lists. For a specific emission et (i.e., the query frame
qt), since its corresponding list Lt containing similar reference
frames is only a subset of state set S, not all the states will
produce the emission. Therefore, we have

P(et|sx) = P(qt|sx) =

{
score(qt, sx), if sx ∈ Lt

0, otherwise
(14)

where score (*, *) is the scoring function for similarity search.
All similarity scores are normalized beforehand.

So far, given a query subsequence, we need to find the
most likely state sequence that might have generated the
query subsequence according to objective function (12). If
we exhaustively evaluate all possible state sequences, it is
computationally prohibitive. Therefore, the Viterbi algorithm,

as a kind of dynamic programming algorithm, is employed.
At any time instant, the Viterbi algorithm avoids tracking all
possible paths by keeping only the most likely path (the partial
best path) for each state. After arriving at the end of the query
sequence, a whole best path can be obtained by a path back-
tracking process.

V. Frame Fusion Using Viterbi-Like Algorithm

In Section IV, we formulate the problem of frame fu-
sion and provide a feasible solution. However, it raises two
problems if we directly follow it. First, high computational
cost is inevitable. In order to detect copied clips, we need
to separately check all possible and temporally successive
query subsequences. If the query length is T, then we need to
check a total of T ·(T+1)

2 query subsequences. Given the average
length Tsub of subsequences and the length M of each list,
a computational complexity of o( T ·(T+1)

2 · MTsub ) is required
using the exhaustive search method. Even if we can reduce the
complexity to o( T∗(T+1)

2 ·Tsub ·M2) using the Viterbi algorithm
[26], it is still expensive. More importantly, this method is
not convenient for dealing with unbounded query stream since
it is impossible to obtain all possible query subsequences
beforehand in this case.

To address these problems, we refine the scheme by mod-
ifying the conventional Viterbi algorithm and introducing an
additional gap constraint.

A. Viterbi-Like Algorithm

Instead of separately checking all possible query subse-
quences, we attempt to detect copies from a continuous query
video stream in an online manner. The core problem is how
to precisely localize boundaries of copies in the continuous
query stream. To this end, we introduce an additional gap
constraint and redefine the partial best path. The gap constraint
provides a mechanism for distinguishing copies from non-copy
video clips as well as tolerating some video transformations
like frame insertion operation. The redefined partial best path
records a reference frame sequence that is most likely to gen-
erate its corresponding query subsequence. The starting and
ending nodes of each path corresponding to a reconstructed
reference video clip are determined by the gap constraint. The
following describes them in details.

1) Gap Constraint: Given the query subsequence (qi−�t,

· · · , qi−1, qi, qi+1, · · · , qt, · · · qj, qj+1, · · · , qj+�t) and a refer-
ence frame sequence (hi−�t, · · · , hi−1, hi, hi+1, · · · , ht, · · · ,
hj, hj+1, · · · , hj+�t), if there is not any transition from hi to
the previous �t reference frames, the time instant i can serve
as a possible starting point of a copy. The constraint means
that we can determine the starting instant of a copy based on
the transition relationship among similar reference frames at
different time instants. Likewise, we can determine the ending
instant in the same way. In addition, the gap constraint can also
deal with video transformations caused by inserting some non-
copy frames. The length of �t limits the maximum number of
non-copy keyframes allowed to be inserted in the copy clip.
We describe this constraint as follows.
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The query subsequence (qi, qi+1, · · · , qt, · · · , qj) is possibly
a copy of the reference sequence (hi, hi+1, · · · , ht, · · · , hj) if
and only if ⎧

⎨

⎩

P(hi|hi−1) = 0
P(hi|hi−2) = 0
P(hi|hi−�t) = 0

(15)

and

⎧
⎨

⎩

P(hj|hj+1) = 0
P(hj|hj+2) = 0
P(hj|hj+�t) = 0.

(16)

Equations (15) and (16) can determine the starting instant i
and the ending instant j, respectively.

2) Partial Best Path: Let δ(t, x) be the best score of all
possible state sequences starting at any states at any previous
time instants and ending at state sx at time instant t. The
partial best path Path(t, x) is the state sequence (or reference
frame sequence) which achieves the best score. Note that
the partial best path ending at state sx at time t may start
at any previous time instants, instead of starting at time t = 1
as Viterbi algorithm does.

At time t = 1, δ(t, x) is calculated as follows:

δ(1, x) = Em(1, x) (17)

where Em(1, x) is the emission probability from state sx to
emission e1, which can be calculated according to the emission
constraint (14). At time 2 ≤ t ≤ ∞, δ(t, x) is calculated as
follows:

δ(t, x) =

{
µ

(
t̃∗, n∗) + Em(t, x), if Em(t, x) > 0

0, otherwise
(18)

µ
(
t̃∗, n∗) = δ

(
t̃∗∗, n∗) · Tr(n∗, x) (19)

(
t̃∗, n∗) =

⎧
⎨

⎩

argmax
1≤t̃<t,1≤n,≤Nt

(
δ
(
t̃, n

)
.Tr(n, x)

)
, t ≤ �t

argmax
t−�t+1≤t̃<t,1≤n,≤Nt

(
δ
(
t̃, n

)
.Tr(n, x)

)
, t > �t

(20)
where Nt is the size of state set at time instant t; (t̃∗, n∗)
indicates the state Sn∗ at time instant, t̃∗ from which δ(t, x)
achieves the best score, µ

(
t̃∗, n∗) indicates the maximum

transition score from states at previous different time instants
to state sx at time instant t; Tr(n, x) is the transition probability
from state sn to sx, which can be calculated according to
the transition constraint (13). For (18), the right side is
µ

(
t̃∗, n∗) + Em(t, x) which is different from the original form

µ
(
t̃∗, n∗) · Em(t, x) in the conventional Viterbi algorithm.

By this way, when the state sx at time instant t has no any
transition with states at previous different time instants (i.e.,
µ

(
t̃∗, n∗) = 0), it can serve as a starting point of new partial

best paths if Em(t, x > 0),. In addition, using this form can
also void the problem of data overflow due to the product of
a large number of values which are far lower than one.

Note that (19) implies the gap constraint (15). If µ
(
t̃∗, n∗) =

0, then δ(t, x) = Em(t, x), which means that no transition exists
between the state sx at time t and any states in the past. That is,
the state sx at time instant t can serve as a starting node of new
partial best paths. The back-tracking strategy is formulated in
(20). It means that at any time instant t, we search backward

Fig. 2. Example illustrating how to get two time stamp sequences for a pair
of query sequence and partial best path. Note that the subscripts of query
frames and reference frames indicate the time instants relative to the first
frame in query sequence and partial best path, respectively.

the best partial paths obtained at several time instants in the
past. In this way, we can iteratively use the previous detection
information and speed up the copy detection.

Using the Viterbi-Like algorithm, the problem of frame
fusion becomes the back-tracking of the partial paths. Once
certain partial best paths meet the gap constraint, we can
then localize both the copies in the query video stream and
their original clips in the reference video. Table I gives the
detailed description of the Viterbi-like algorithm. Note that
both emission and transition matrices are updated dynamically
since new emissions and states are generated when new
query frames come. Still, the construction of the transition
and emission matrices is based on the proposed transition
and emission constraints (13), (14), respectively. Because
the dynamic programming method used in the conventional
Viterbi algorithm is remained, the efficiency of frame fusion
is high.

The main difference from the conventional Viterbi algorithm
is that Viterbi-like algorithm back-tracks the partial best paths
at each time instant, instead of back-tracking once after
traveling forward all the time instants. It means that the back-
tracking process will never stop until arriving at the end of the
query stream. In this way, it can deal with a continuous query
stream by making an online decision. Another difference lies
in that the Viterbi-like algorithm builds the partial best path for
the current time instant by looking back several time instants
in the past, instead of checking only the previous one time
instant as the conventional Viterbi algorithm does. Equation
(20) implies this strategy. By this way, we can enlarge the
match scope and then tolerate more complex transformations.

B. Pruning and Localization

Each partial best path is a reference frame sequence, which
corresponds to a query subsequence. Because we make a
decision when each new query frame comes, we need to de-
termine whether the partial best paths (reference sequences) at
current time instant indeed generate their corresponding query
sequences. Intuitively, we still need a hard threshold to solve
this problem. Here, the hard threshold means a fixed score
value that is used for all queries to determine whether copies
occur in queries. However, according to gap constraint, only
the partial best paths which meet the equation groups (15), (16)
are retained. The corresponding query subsequences of the
retained paths are treated as copies. Note that we need to check
the following �t query frames so as to determine whether the
partial best paths at current time instant are ended. In order
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Fig. 3. Example frames from the transformed query videos.

to further filter out false copies, we compute the Pearson’s
correlation coefficient between the aligned time stamps of cor-
responding query sequence and partial best path. Fig. 2 shows
how to get two time stamp sequences for a pair of query se-
quence and partial best path with four frames. Given two time
stamp sequences X = (x1, x2, · · · , xn) and y = (y1, y2, · · · , yn),
the Pearson’s correlation coefficient is given by

ρ(X, Y ) =
n ·

(∑n

i=1 xi · yi

)
−

(∑n

i=1 xi

)
·
(∑n

i=1 yi

)
√

n ·
(∑n

i=1 x2
i

)
−

(∑n

i=1 xi

)2 ·
√

n ·
(∑n

i=1 y2
i

)
−

(∑n

i=1 yi

)2
.

(21)

The correlation coefficient ranges from −1 to 1, and it is
greater than 0 if two sequences are positive correlation. In our
context, only the pairs with positive correlation are reserved.
The resulting partial best paths are further filtered out by
pruning those short paths. Here, we consider a path as short
path if the number of its nodes is less than six.

After we have obtained a series of partial best paths and
query subsequences, we need to consider how to localize them
in the reference database and in the query stream, respectively.
In fact, since the frames in the query sequence are ordered
temporally, the starting and ending time instants of a path
localize a possible copy in the query video stream. To find
the location of a partial best path in the reference database,
the boundary information of shots is used. According to the
transition constraint, all the reference frames in a path may be
out of order temporally, but they must be in the same shot or
adjacent shots. Therefore, we can localize the reference clip in
the database by searching lower and upper boundary of frames
in the corresponding shots.

Since our localization of reference clips is based on the
boundaries of shots, it is very likely to generate the same
reference clip for different paths. In our scheme, for all the
paths corresponding to the same reference clip, we only remain
the one with the largest length.

VI. Evaluation Setup

A. Reference Dataset

Our video copy detection system is evaluated based on
the Sound & Vision dataset used in TRECVID 2008 search

Fig. 4. Copy overlap degree evaluation on separate queries.

Fig. 5. Reference overlap degree evaluation on separate queries.

Fig. 6. Copy overlap degree evaluation on varied transformations.
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TABLE I

Frame Fusion Using Viterbi-Like Algorithm

and high level feature extraction tasks. This dataset contains
approximately 200 h of videos including news magazine,
science news, educational programming, and archival video.
Using the frame sampling strategy proposed in Section III,

Fig. 7. Reference overlap degree evaluation on varied transformations.

TABLE II

Single Transformation List

Type Decrease in Quality (Ta) Post-Production (Tb)
Blur Crop

Gamma Shift
Frame dropping Contrast

Contrast Caption (text insertion)

Si
ng

le

Compression Flip (vertical mirroring)

T
ra

ns
fo

rm
at

io
ns

Ratio Insertion of pattern
Noise Picture in picture

over 2 million keyframes are sampled from the video dataset.
All our experiments are carried out on this reference dataset.

B. Query Construction

In our experiment, four video clips are selected from the
reference dataset, and one video clip is selected from non-
reference dataset. Each clip is inserted into a non-reference
video stream. After that, all the combined video streams are
transformed separately by applying ten complex transforma-
tions. The total 50 query video streams are generated for
testing our proposed method. Note that only 40 of these
queries indeed have copies. In our experiment, ten complex
transformations are constructed by combining one or more
single video transformations. Table II lists all the single video
transformations of two types, and Fig. 3 illustrates these ten
complex transformations with some example frames.

C. Evaluation Criteria

The miss rate and the false alarm rate are two criteria
generally used for evaluating the detection accuracy. They are
defined as follows:

RMiss =
Nrel − Nret rel

Nrel

(22)

RFA =
Nret − Nret rel

Nret

(23)

where Nret is the total number of the returned results, Nret rel

is the number of true positives in the returned results, and Nrel

is the total number of true positives.
Although the above evaluation criteria can give a good

measurement on the overall detection performance, they do
not take into account the localization precision. Thus two more
criteria for evaluating the localization precision are defined.
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1) Copy Overlap Degree: This criterion measures the
overlap degree in time duration between the detected copy
and its ground truth

CopyOverlap(i) =
Overlap(Qi, Qgi)

Length(Qgi)
(24)

where Overlap(Qi, Qgi) is the time span of overlap be-
tween the detected copy clip Qi and its ground truth clip
Qgi, Length(Qgi) is the total time span of the ground truth
clip Qgi.

2) Reference Overlap Degree: This criterion measures the
overlap degree in time duration between the asserted reference
clip of a copy and its ground truth

RefOverlap(i) =
Overlap(Ri, Rgi)

Length(Rgi)
(25)

where Overlap(Ri, Rgi) is the time span of overlap be-
tween the asserted reference clip Ri and its ground truth
Rgi, Length(Rgi) is the total time span of the ground truth clip
Rgi. Note that NIST TRECVID 2008 provides all the ground
truth data for evaluation.

VII. Experimental Results

A. Average Localization Precision

As stated in Section V, the gap constraint plays a key role in
detecting the boundaries of copies. In addition, since the length
of list returned for each query frame determines the tolerance
degree to the matching errors, it also has an important effect on
the localization precision. In this section, we have performed
experiments to evaluate the effects of the gap constraint and
list length. To evaluate the localization precision in the query
stream, the average copy overlap degree is computed over the
queries containing copies. A total of 12 runs are performed
with various combinations of the gap and list lengths. The
results are displayed in Table III. The columns show the
localization performance when varying the gap lengths, and
the rows display the performance when varying the list lengths.
The high overlap degree means high localization precision.
There is a clear tendency that the localization precision is
improved with increasing either the gap length or the list
length. As discussed above, the gap length determines the gap
between the first frame of a possible copy and previous non-
relevant frames. A big gap length means a higher possibility
that the candidate clip starting from this frame can be a copy.
In addition, the gap constraint also provides a mechanism
for tolerating the frame dropping transformation. The bigger
the gap length is, the stronger the tolerance degree to frame
dropping is. Similarly, a list with large length gives more
chances to identify a complete copy. Similar tendency can
also be obtained for the localization precision in the reference
database. Table IV shows the experimental results.

B. Localization Precision on Separate Queries

In addition to the average overlap degree measurement,
we also evaluate the effectiveness of the proposed method
on the separate queries. The histograms of both the query
and reference overlap degrees are given in Figs. 4 and 5,

TABLE III

Evaluation on Average Copy Overlap Degree

M 1 10 100 200
�t

1 0.623897 0.729671 0.772739 0.802450
2 0.730087 0.802712 0.837362 0.913016
3 0.754871 0.816329 0.882743 0.935390

TABLE IV

Evaluation on Average Reference Overlap Degree

M 1 10 100 200
�t

1 0.835474 0.855282 0.870448 0.906880
2 0.859533 0.893803 0.894382 0.946784
3 0.871408 0.905232 0.924617 0.950131

respectively. For most of queries, our algorithm achieves high
localization precision in both the query and reference videos,
though it fails in localizing a few of queries, such as query 8.
In two figures, some empty bins mean that our copy detection
system fails when detecting the copies in the corresponding
queries. We will discuss it in more detail when comparing the
proposed method with state-of-the-art systems. Note that only
the run with the gap length 3 and list length 200 is displayed.
In fact, similar conclusion can also be obtained for other
runs.

C. Localization Precision on Varied Transformations

A copy is usually a distorted version of its original video
clip. Different transformations will distort the original video
signal in different manners. A good copy detection system
should not only tolerate various distortions but also distinguish
copies from non-copy clips. In this section, we carry out
experiments to evaluate localization performance on differ-
ent transformations. Ten transformations used in TRECVID
2008 CBCD task are employed in our experiments. For each
transformation, we have five queries, and four of them indeed
insert copies in their video streams. Likewise, we use copy
overlap degree and reference overlap degree to evaluate the
localization precision. The difference is that the average over-
lap degree for each transformation is obtained by averaging
over the queries undergoing the transformation.

The histograms of query and reference overlap degrees are
plotted in Figs. 6 and 7, respectively. Our algorithm achieves
high localization precision in both the query and reference
videos for most of transformation types. This means that the
proposed algorithm indeed provides a robust mechanism for
tolerating various transformations. Still, only the run with the
gap length 3 and list length 200 is displayed, and similar
conclusion can also be obtained for other runs.

D. Comparison with State-of-the-Art Methods

In the above subsections, we validate the effectiveness of
the proposed algorithm by tuning different impact factors.
In this subsection, we will compare the proposed algorithm
with the state-of-the-art techniques. In our experiment, three
leading copy detection systems [4], [13], which achieve the
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Fig. 8. Comparison with state-of-the-art copy detection systems on copy overlap degree with varied transformations.

Fig. 9. Comparison with state-of-the-art copy detection systems on reference overlap degree with varied transformations.

best detection performance in NIST TRECVID 2008 CBCD
task, are used for comparison. These three systems are named
as Lear-Strict, Lear-Soft, and IMedia-Fusion, respectively.
Note that both Lear-Strict and Lear-Soft come from the same
scheme INRIA-LEAR with different parameter settings in [4]
and [36]. The main difference between Lear-Strict and Lear-
Soft is that Lear-Strict only keeps the top-ranked copies.

First, we compare four copy detection systems on the aver-
age precision in both the copy and reference localizations. Ta-
ble V lists all the evaluation results. For the copy localization,
the proposed method obtains quite good performance though
it is a little weaker than the top two systems. For the reference
localization, the proposed method gets almost the best perfor-
mance. That is, the proposed method indeed works well for
localizing the copy in both the query and reference videos.

Second, we compare these systems on the localization
performance for different transformations. The histograms of
both query and reference overlap degrees are plotted in Figs. 8
and 9, respectively. For the copy localization, the proposed
method obtains the best performance for four transforma-
tions, i.e., T1, T3, T5, and T10. The performances for other
transformations except T8 are also good. After analyzing the

TABLE V

Comparison on Average Copy and Reference Overlap Degree

System Average Copy Overlap Average Reference
Degree Overlap Degree

Lear-Strict 0.981406 0.950439
Lear-Soft 0.979899 0.843860
IMedia-Fusion 0.770349 0.770694
Proposed 0.935390 0.950131

similarity search results, we find that for the copies undergoing
T8 transformation, even no true relevant reference frames are
returned for the copy frames near the boundaries. This means
that only a part of copy is detected, which leads to low query
overlap degree. The main reason lies in to some extent that the
used SIFT descriptor is not robust to flip transformation and
we do not handle this operation further. In our future work,
we will take the mirroring operation into account in designing
feature extraction scheme.

For the reference localization, the proposed method achieves
the best performance for six of ten transformations. The
performance for other transformations is also comparable with
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TABLE VI

Comparison on Miss Rate and False Alarm Rate

System Rmiss RFA

Lear-Strict 0.000000 0.166667
Lear-Soft 0.075000 0.663636
IMedia-Fusion 0.200000 0.360000
Proposed 0.225000 0.288900

TABLE VII

Effect of Vocabulary Size on the Overall Performance

Vocabulary Size Average
Copy
Overlap
Degree

Average
Reference
Overlap
Degree

Rmiss RFA

10 000 0.896870 0.914383 0.325000 0.372100
100 000 0.935390 0.950131 0.225000 0.288900

the best ones. This means that our proposed copy detection
method is indeed robust to various video distortions. Encour-
agingly, the proposed method achieves the best localization
performance for the most complex transformation T10 in both
the query and reference videos. That is, our method can
tolerate severe signal distortions.

Finally, we compare all systems on the overall detection
performance, i.e., the miss rate and the false rate. Table VI
lists all the evaluation results. Although the performance of
the proposed algorithm is not as good as other systems in the
miss rate, it still achieves a comparable performance with the
system IMedia-Fusion, especially in the false alarm rate. As
discussed in [6], a complete copy detection system comprises a
few key components including the sampling rate of key frames,
feature extraction, similarity search as well as frame fusion
results. The overall performance of such a system depends on
the aggregated result of all the constituents. In our scheme, we
focus mainly on the frame fusion stage. Although the proposed
frame fusion method achieves high localization precision, it
indeed slightly reduces the detection precision. In fact, this
issue can be solved by enhancing the other components. For
example, the detection performance can be notably improved
by simply changing the size of visual vocabulary since there
is a tradeoff between the robustness and discriminability of
bag-of-features [23]. A larger size of visual vocabulary means
better discriminability capability. The experimental results are
illustrated in Table VII. When we change the vocabulary
size from 10 000 to 100 000, the detection performance has
a remarkable improvement.

E. Evaluation on Frame Fusion Efficiency

In the proposed approach, the frame fusion problem can
be dealt with in real-time due to the high efficiency of the
Viterbi-like algorithm. However, real-time frame fusion is a
vital but not the only step toward real-time copy detection.
The detection system can still be slow if the similar reference
frame cannot be retrieved in real-time. Since our work focuses
mainly on frame fusion, real-time similar search is out of
scope of this paper. Because we cannot get the copy detection
systems in [4] due to the limitation of computer power and

TABLE VIII

Comparison on Runtime of the Processing Stages (Hours:

Minutes: Seconds)

System Stages Frame Sampling Rate
1 F/S 3F/S 12.5F/S

INRIA-LEAR Frame fusion 0H:12M N/A 4:16
Average frame fusion 0.0021S/F N/A 0.0438S/F

Proposed system
(frame list = 200)

Frame fusion N/A 0H:55M N/A

Average frame fusion N/A 0.0374S/F N/A
Proposed system Frame fusion N/A 10M:28S N/A
(frame list = 50) Average frame fusion N/A 0.0014S/F N/A

For INRIA-LEAR in [4] and [36], the database contains 21 h 11 min and
the total length of queries is 3 h 54 min, whereas lengths of database and
queries are about 200 h and 59 min for our system, respectively.

copyright, we directly adopt their output results available
in Trecvid’08 [30]. However, since the output results do
not contain the time cost information in the frame fusion
stage, we cannot make an exact comparison on frame fu-
sion efficiency. Fortunately, the authors of INRIA-LEAR give
detailed information of time cost about every stage of copy
detection in their new paper [5] to be appeared. While that
information is achieved via different database and computer
configures, we manage to present a rough comparison of frame
fusion efficiency. Since the frame rate of video is 25 frames
per second (F/S), the system must process a query frame
within 1/25 = 0.04 s (i.e., 0.04S/F) if it wants to achieve
a real-time frame fusion. As shown in Table VIII, although
INRIA-LEAR can perform a real-time frame fusion (0.0021S/F
< 0.04S/F) when frame sampling rate is very low (i.e., 1F/S),
it loses the real-time property (0.0438S/F > 0.04S/F) when
frame sampling rate is high (i.e., 12.5F/S which is its default
setting). In contrast, the proposed frame fusion method with
a compromised sampling rate (i.e., 3F/S) can fuse candidate
reference frames in real-time even if the main parameter
setting varies greatly, see 0.0374S/F for Frame list = 200 and
0.0014S/F for Frame list = 50, respectively. Note that when
Frame list = 50, the frame fusion efficiency of the proposed
scheme outperforms INRIA-LEAR even if its sampling rate
is higher than one of the sampling rates of INRIA-LEAR,
compared 0.0014S/F with 0.0021S/F and 0.0438S/F. Here, the
average frame fusion time is calculated over the total number
of query frames (not only the query keyframes). In conclusion,
our proposed system indeed achieves real-time frame fusion
even with less powerful computer than INRIA-LEAR.

VIII. Conclusion

In this paper, we proposed a frame fusion based copy
detection approach, which involves similar frame search and
frame fusion. Our work focused mainly on the critical frame
fusion stage. The proposed frame fusion scheme employs a
Viterbi-like dynamic programming algorithm that comprises
an online back-tracking strategy and three relaxed constraints.
The major advantages of this scheme lie in the following three
novel aspects: 1) propose a real-time frame fusion, which can
apply to the copy detection problem in a continuous query
video stream; 2) relax strict temporal consistency constraints
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to handle complex transformations and tolerate matching offset
and misalignment; and 3) avoid the difficult problem of thresh-
old selection and provide precisely temporal localization. In
addition, since the proposed frame fusion procedure is under
a dynamic programming framework, the fusion efficiency is
very high. The experimental results show that the proposed
approach achieves high localization accuracy in both the query
stream and the reference database and provides good tolerance
to some difficult video transformations.
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